Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Electronic, vibrational, and optical properties of fullerene-S $_8$ co-crystals

Maliheh Shaban Tameh, Xiaojuan Ni, Veaceslav Coropceanu,* and Jean-Luc Brédas*

Department of Chemistry and Biochemistry The University of Arizona Tucson, Arizona 85721-0041

^{*} Emails: coropceanu@arizona.edu; jlbredas@arizona.edu

Content

Table S1. Largest electronic couplings (in meV) between the LUMOs of the fullerene and S8components in the $C_{60} - 2S_8$ co-crystal, as calculated at the PBE/6-31G (d,p) and B3LYP/6-31G(d,p) levels of theory.S3

Table S2. Largest electronic couplings (in meV) between the LUMOs of the fullerene and S_8 components in the $C_{70} - 2S_8$ co-crystal, as calculated at the PBE/6-31G (d,p) and B3LYP/6-31G (d,p) levels of theory.

Figure S1. Fullerene pairs used for the calculations of the transfer integrals. S4

Table S3. Transfer integrals for holes (t_h) and electrons (t_e) between the fullerene pairs shown in Figure S1, as computed at the PBE/6-31G (d,p) and B3LYP/6-31G (d,p) (in parentheses) levels of theory. All energies are in meV.

Figure S2. Comparison of the IR spectra of C_{60} obtained at the PBE/6-31G (d,p) and B3LYP/6-31G (d,p) levels of calculation. S6

Figure S3. Comparison of the IR spectra of C_{70} obtained at the PBE/6-31G (d,p) and B3LYP/6-31G (d,p) levels of calculation. S6

Figure S4. Comparison of the natural transition orbitals in the $C_{70} - S_8$ complex for the mixed charge transfer-local exciton states with energy of (a) 2.70 eV and (b) 2.77 eV. S7

Figure S5. Comparison of the LC- ω HPBE/6-31G (d,p) natural transition orbitals (NTOs) in the $C_{60} - S_8$ complex between (a) the C_{60} singlet local excited state S₁₅ (λ value for the NTO shown is 0.66; the other relevant NTOs involve additional fullerene frontier molecular orbitals) and (b) the lowest singlet charge-transfer state (λ (NTO) = 0.81), i.e., the S₁₆ state. S8

Table S4. Singlet TD-DFT excitation energies [eV] in S₈-C₆₀ and S₈-C₇₀ model complexes, ascalculated at the B3LYP/6-31G (d,p) level of theory. The lowest CT states in each system areindicated in bold.S9

Table S5. Singlet TD-DFT excitation energies [eV] in S_8 , C_{60} , and an S_8 - C_{60} model complex, ascalculated at the LC- ω HPBE/6-31G (d,p) level of theory. The lowest CT states in the latter systemis indicated in bold.S10

Table S1. Largest electronic couplings (in meV) between the LUMOs of the fullerene and S_8 components in the $C_{60} - 2S_8$ co-crystal, as calculated at the PBE/6-31G (d,p) and B3LYP/6-31G (d,p) levels of theory.

Method	Orbitals	t _e
PBE	LUMO, LUMO	4
	LUMO, LUMO+1	16
	LUMO, LUMO+2	101
B3LYP	LUMO, LUMO	5
	LUMO, LUMO+1	22
	LUMO, LUMO+2	114

Table S2. Largest electronic couplings (in meV) between the LUMOs of the fullerene and S_8 components in the $C_{70} - 2S_8$ co-crystal, as calculated at the PBE/6-31G (d,p) and B3LYP/6-31G (d,p) levels of theory.

Method	Orbitals	t _e
PBE	LUMO-LUMO	65
B3LYP	LUMO-LUMO	76

Figure S1. Fullerene pairs used for the calculations of the transfer integrals.

	C ₆₀ 2S ₈		C ₇₀ 2S ₈	
Pair	t _h	t _e	t _h	t _e
1	37 (41)	32 (45)	40 (35)	27 (29)
2	48 (55)	41 (47)	6 (6)	2 (2)
3	33 (38)	48(55)	12 (9)	19 (25)
4	48 (55)	40 (47)	40 (35)	27 (29)
5	50 (57)	17 (19)	12 (9)	19 (25)
6	33 (37)	13 (15)	6 (6)	2 (2)
7			40 (35)	27 (29)
8			17 (20)	13 (15)
9			6 (6)	2 (2)
10			12 (9)	19 (25)

Table S3. Transfer integrals for holes (t_h) and electrons (t_e) between the fullerene pairs shown in Figure S1, as computed at the PBE/6-31G (d,p) and B3LYP/6-31G (d,p) (in parentheses) levels of theory. All energies are in meV.

Figure S2. Comparison of the IR spectra of C_{60} obtained at the PBE/6-31G (d,p) and B3LYP/6-31G (d,p) levels of calculation.

Figure S3. Comparison of the IR spectra of C_{70} obtained at the PBE/6-31G (d,p) and B3LYP/6-31G (d,p) levels of calculation.

Figure S4. Comparison of the natural transition orbitals (NTOs) in the $C_{70} - S_8$ complex for the mixed charge transfer-local exciton states with energies of: (a) 2.70 eV (S_{23} state; λ for the NTO shown is 0.64; the other major contributing NTOs correspond to transitions among fullerene frontier molecular orbitals); (b) 2.77 eV (S_{27} state; λ for the NTO shown is 0.55; the other major contributing NTOs correspond to transitions among fullerene frontier molecular orbitals).

Figure S5. Comparison of the LC- ω HPBE/6-31G (d,p) natural transition orbitals (NTOs) in the $C_{60} - S_8$ complex between (a) the C_{60} singlet local excited state S₁₅ (λ value for the NTO shown is 0.66; the other relevant NTOs involve additional fullerene frontier molecular orbitals) and (b) the lowest singlet charge-transfer state (λ (NTO) = 0.81), i.e., the S₁₆ state.

Transition	S ₈ -C ₆₀ complex (eV)	S ₈ -C ₇₀ complex (eV)
$S_0 \rightarrow S_1$	2.10	2.10
$S_0 \rightarrow S_2$	2.10	2.11
$S_0 \rightarrow S_3$	2.10	2.15
$S_0 \rightarrow S_4$	2.10	2.16
$S_0 \rightarrow S_5$	2.11	2.17
$S_0 \rightarrow S_6$	2.11	2.17
$S_0 \rightarrow S_7$	2.11	2.19
$S_0 \rightarrow S_8$	2.11	2.34
$S_0 \rightarrow S_9$	2.11	2.34
$S_0 \rightarrow S_{10}$	2.11	2.40
$S_0 \rightarrow S_{11}$	2.28	2.40
$S_0 \rightarrow S_{12}$	2.28	2.49
$S_0 \rightarrow S_{13}$	2.28	2.55
$S_0 \rightarrow S_{14}$	2.28	2.56
$S_0 \rightarrow S_{15}$	2.28	2.58
$S_0 \to S_{16}$	2.84	2.58
$S_0 \rightarrow S_{17}$	2.85	2.59
$S_0 \rightarrow S_{18}$	2.85	2.59
$S_0 \rightarrow S_{19}$	2.86	2.67
$S_0 \rightarrow S_{20}$	2.86	2.67
$S_0 \rightarrow S_{21}$	2.87	2.69
$S_0 \rightarrow S_{22}$	2.87	2.69
$S_0 \to S_{23}$	2.87	2.70
$S_0 \rightarrow S_{24}$	2.88	2.70
$S_0 \rightarrow S_{25}$	2.88	2.72
$S_0 \rightarrow S_{26}$	3.16	2.77
$S_0 \to S_{27}$	3.16	2.77

Table S4. Singlet TD-DFT excitation energies [eV] in S₈-C₆₀ and S₈-C₇₀ model complexes, as calculated at the B3LYP/6-31G (d,p) level of theory. The lowest CT states in each system are indicated in bold.

Transition	$S_8 (eV)$	$C_{60}(eV)$	S ₈ -C ₆₀ complex (eV)
$S_0 \rightarrow S_1$	4.03	2.18	2.17
$S_0 \rightarrow S_2$	4.03	2.18	2.17
$S_0 \rightarrow S_3$	4.10	2.18	2.17
$S_0 \rightarrow S_4$	4.14	2.18	2.17
$S_0 \rightarrow S_5$	4.15	2.18	2.17
$S_0 \rightarrow S_6$	4.22	2.18	2.18
$S_0 \rightarrow S_7$	4.33	2.18	2.18
$S_0 \rightarrow S_8$	4.50	2.18	2.18
$S_0 \rightarrow S_9$	4.50	2.18	2.18
$S_0 \rightarrow S_{10}$	4.52	2.18	2.18
$S_0 \rightarrow S_{11}$	4.53	2.38	2.36
$S_0 \rightarrow S_{12}$	4.59	2.38	2.37
$S_0 \rightarrow S_{13}$	4.59	2.38	2.37
$S_0 \rightarrow S_{14}$	4.62	2.38	2.37
$S_0 \rightarrow S_{15}$	4.68	2.38	2.37
$S_0 \to S_{16}$	4.68	3.32	3.25
$S_0 \rightarrow S_{17}$	4.83	3.32	3.27
$S_0 \rightarrow S_{18}$	4.98	3.32	3.28
$S_0 \rightarrow S_{19}$	4.98	3.32	3.28
$S_0 \rightarrow S_{20}$	5.02	3.32	3.29
$S_0 \rightarrow S_{21}$	5.02	3.32	3.30
$S_0 \rightarrow S_{22}$	5.31	3.32	3.30
$S_0 \rightarrow S_{23}$	5.41	3.32	3.31
$S_0 \rightarrow S_{24}$	5.41	3.41	3.33
$S_0 \rightarrow S_{25}$	5.42	3.41	3.34
$S_0 \rightarrow S_{26}$	5.42	3.41	3.34
$S_0 \rightarrow S_{27}$	5.46	3.41	3.36

Table S5. Singlet TD-DFT excitation energies [eV] in S_8 , C_{60} , and an S_8 - C_{60} model complex, as calculated at the LC- ω HPBE/6-31G (d,p) level of theory. The lowest CT state in the latter system is indicated in bold.

Reference

1. Bethune, D. S.; Meijer, G.; Tang, W. C.; Rosen, H. J.; Golden, W. G.; Seki, H.; Brown, C. A.; de Vries, M. S., Vibrational Raman and infrared spectra of chromatographically separated C60 and C70 fullerene clusters. *Chemical Physics Letters* **1991**, *179* (1-2), 181-186.