Supplementary Information

Well-dispersed FeNi nanoparticles embedded in N-doped carbon nanofibers membrane as self-supporting and binder-free anode for lithium-ions batteries

Xiaoqiang Li ^{a,b}, Guangguang Guan ^{c,d}, Bingjie Cheng ^a, Xueke Zhang ^a, Kaiyin Zhang ^e, Jun Xiang ^{a,*}

^a School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China

^b Institute of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China

^c Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences,

Shenyang, 110016, PR China

^d School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016,

PR China

^e College of mechanical and electrical engineering, Wuyi University, Wuyishan 354300, PR China

* Corresponding author.

E-mail address: jxiang@just.edu.cn (J. Xiang).

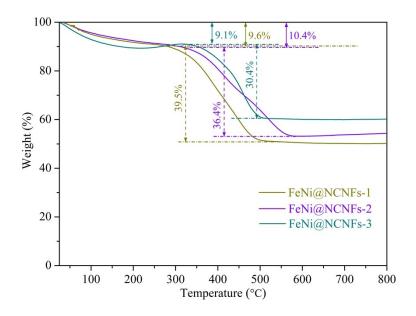
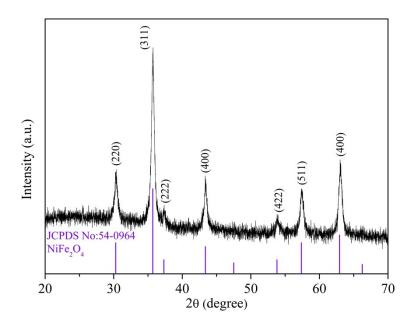



Fig. S1. TG curves of FeNi@NCNFs-1, FeNi@NCNFs-2 and FeNi@NCNFs-3.

 $\textbf{Fig. S2.} \ \textbf{XRD} \ pattern \ of the \ residue \ after \ \textbf{TG} \ test \ of \ FeNi@NCNFs-2.$

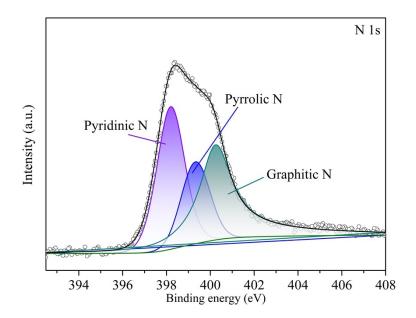
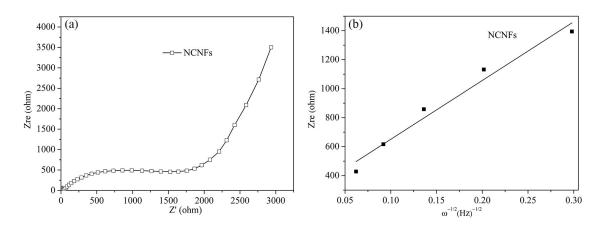
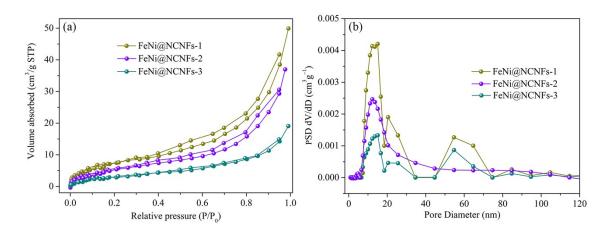




Fig. S3. High-resolution XPS spectra of N 1s.

Fig. S4. (a) Impedance spectra and (b) Z_{re} (real part of impedance) vs. $\omega^{-1/2}$ plot in the frequency range for the NCNFs electrode.

Fig. S5. (a) Nitrogen adsorption-desorption isotherms and (b) pore size distributions of FeNi@NCNFs-1, FeNi@NCNFs-2 and FeNi@NCNFs-3.

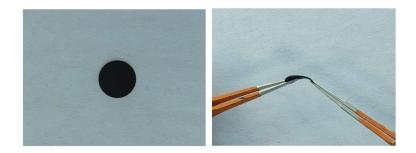


Fig. S6. Digital photo and bending test.