Supporting Information

Upconversion enhancement through engineering local crystal field in Yb³⁺ and Er³⁺ codoped BaWO₄ along with excellent temperature sensing performance

Guotao Xiang^{1,*}, Zhen Liu¹, Zhiyu Yang¹, Yongjie Wang¹, Lu Yao¹, Sha Jiang¹,

Xianju Zhou¹, Li Li¹, Xiaojun Wang^{3,*} and Jiahua Zhang^{2,*}

¹ Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, 2 Chongwen Road, Chongqing 400065, China

² State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern South Lake Road, Changchun 130033, China

³ Department of Physics & Astronomy, Georgia Southern University, Statesboro, Georgia 30460,

U.S.A.

Corresponding Authors: Dr. Guotao Xiang; Email address: <u>xianggt@cqupt.edu.cn</u> Dr. Jiahua Zhang; Email address: <u>zhangjh@ciomp.ac.cn</u> Dr. Xiaojun Wang; Email address: <u>xwang@georgiasouthern.edu</u>

Figure S1 UC spectra of BaWO₄: 10% Yb³⁺/1% $Er^{3+}/5\%$ Ca²⁺ and CaWO₄: 5% Yb³⁺/1% Er^{3+} excited by 980 nm wavelength.

Figure S2 Temperature-dependent green UC spectra under the excitation of 980 nm wavelength in BWOC.

Figure S3 The repeatability studies in the temperature cycling between 298 K and 573 K.

Figure S4 Temperature-dependent (a) green UC spectra normalized at 553 nm and (b) *FIR* between ${}^{2}\text{H}_{11/2} \rightarrow {}^{4}\text{I}_{15/2}$ and ${}^{4}\text{S}_{3/2} \rightarrow {}^{4}\text{I}_{15/2}$ transition as well as the corresponding temperature sensing (c) sensitivity and (d) resolution in BWO.

Figure S5 The diagram of the experimental setup used to verify the accuracy of BWO and BWOC for temperature sensing.