Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

## Supporting Information

Developing versatile dendrimer host material for solution-processed phosphorescence, TADF and multi-resonance narrow-band OLEDs

Wenhao Zhang<sup>a,1</sup>, Jianmin Yu<sup>a,1</sup>, Qingpeng Cao<sup>a</sup>, Youqiang Qian<sup>a</sup>, Jiayi Wang<sup>a</sup>, Caixia Yang<sup>a</sup>, Hongyu Zhuang<sup>a</sup>, Wenzhong Bian<sup>a</sup>, Yumeng Xin<sup>a</sup>, Xinxin Ban<sup>a</sup>\*

<sup>a</sup> School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, P.R. China

<sup>1</sup>Contributed equally.

\*Corresponding authors. Email addresses: banxx@jou.edu.cn.

## 1. Characterization.

<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded in CDCl<sub>3</sub> using a Bruker AVANCE 400 spectrometer. Absorption spectra were measured by a UV-Vis spectrophotometer (UV-2450) in the range of 200–500 nm. Photoluminescence (PL) spectra were recorded using a HORIBA FLUOROMAX-4 spectrofluorometer containing a liquid N<sub>2</sub> attachment. Differential scanning calorimetry (DSC) curves were obtained with a DSC 2910 Modulation Calorimeter at a heating rate of 10 °C min<sup>-1</sup> under a nitrogen flow. Thermal gravimetric analyzer was carried out on a Netzsch simultaneous thermal analyzer system (STA 409PC) under a nitrogen atmosphere at a heating rate of 20 °C min<sup>-1</sup>. The Cyclic voltammetry cell consisted of a glassy carbon electrode, a Pt wire counter electrode, and a standard Ag reference electrode in CH<sub>2</sub>Cl<sub>2</sub> solution. All quantum chemical calculations were performed using the Gaussian 09 program package.

## 2. Device Fabrication and Characterization

The ITO glass substrates are ultrasonically treated with a cleaning agent prior to device manufacture. The glass substrates are then sonicated with anhydrous ethanol, acetone and isopropanol in that order and finally dried at 120 °C for 30 min. The dried glass substrate was placed in a clean petri dish and then treated in a UV-ozone environment for 15 min. After hydrophilic treatment by plasma for ten minutes, the PSS: PEDOT aqueous solution was spin-coated on the ITO substrate. The emission layer (10 mg mL<sup>-1</sup>) was then spin-coated on top of the PEDOT: PSS layer. After heat-treatment for another 15 min, all the substrates were transferred into deposition system. The devices were fabricated under the pressure of below  $1.0 \times 10^{-4}$  Torr. The electron transport layer TPBi (40 nm) was continuously thermally evaporated at a rate of 2.0 Å s<sup>-1</sup>. Then, the hole-injection layer Cs<sub>2</sub>CO<sub>3</sub> (1 nm) was carefully deposited on the organic surface at a rate of 0.1 Å s<sup>-1</sup>, and finally the 100 nm aluminum electrode was thermally evaporated at a rate of 3.0 Å s<sup>-1</sup>. The electroluminescence characteristics of the devices were measured using a Keithley 2400 source meter at room temperature under atmospheric environment without any encapsulation. EL spectra, device brightness and current density-voltage characteristics are recorded using a combination of Photo-Research PR-655 Spectra Scan and Keithley 2400 Source meter.

## 3. Supporting Figures and Tables



Figure S1. Cyclic voltammetry curves of 4Cz-SO and 43Cz-SO in DCM.



Figure S2. TGA and DSC curves of 4Cz-SO and 43Cz-SO (heating rate: 10°C min<sup>-1</sup>)



**Figure S3**. Fluorescence emission spectra of 4Cz-SO (a) and 43Cz-SO (b) in nitrogen and oxygen; Emission spectra and delayed emission spectra of 4Cz-SO (c) and 43Cz-SO (d) films.



Figure S4. EL spectra for 4Cz-SO and 43Cz-SO



Figure S5. Electroluminescence spectra of 4Cz-SO:Firpic and 43Cz-SO:Firpic in devices at different voltages



Figure S6. Electroluminescence spectra of 4Cz-SO: Firpic: Red and 4Cz-SO:4CzCN in devices at different voltages



Figure S7. Electroluminescence spectra of 4Cz-SO:S-Cz-BN in devices at different voltages



Figure S8. (a) J–V–L curves, (b) EQE versus Current density, and (c) EL spectra (inset: photograph of the device) for PVK : 6% S-Cz-BN



Figure S9. <sup>1</sup>H NMR spectrum of 4Cz-SO.



Figure S10. <sup>1</sup>H NMR spectrum of 43Cz-SO.







Figure S12. MS spectrum of 43Cz-SO.