A flexible piezoresistive strain sensor based on MXene/bacterial cellulose hydrogel with high mechanical strength for real-time monitoring of human motions

Yuwen Gai^a, Luyu Yang^{ab*}, Wei Shen^a, Fengyan Tan^a, Qingqing Yu^a, Lei Zhang^{a*}, and

Dongping Sun^a*

 ^a Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China

^b Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University,

301 Xuefu Road, Zhenjiang 212013, China

*Corresponding author, E-mail: Yangluyu0928@163.com (Luyu Yang); leizhang@njust.edu.cn (Lei Zhang); sundpe301@163.com (Dongping Sun).

Figure S1. Cross-section SEM micrograph of rBC/MXene hydrogel after elongation break.

Figure S2. Cross-section SEM micrograph of rBC/MXene hydrogel after compression.

Figure S3. Fluorescence microscopic images of C2C12 cells after live/dead staining, which were seeded onto (a) rBC and (b) rBC/MXene-35 hydrogels and cultured for 24 h. Confocal microscopic images of C2C12 cells after seeding on (c) rBC and (d) rBC/MXene-35 hydrogels for 24 h. The cell skeleton and nucleus were shown in red

and blue, respectively.

Figure S4. Water loss rate of hydrogels after stretching 100%.

Figure S5. Physical diagram of the use of the sensor.

Figure S6. Schematic diagram of the use of the sensor.

Table S1. Comparing the breaking strength and GF value of this work with those from other sensors.

References

[1] Shintake J, Piskarev Y, Jeong S H, et al. Ultrastretchable strain sensors using carbon black-filled elastomer composites and comparison of capacitive versus resistive

Number	Sensing material	Breaking Strength (MPa)	GF	Ref.
1	Ecoflex-CB	0.125	0.98	[1]
2	pDA-rGO-AgNWs-Sponges	0.0547	1.5	[2]
3	ССР	0.7	10.1	[3]
4	PVA/AgNPs	0.5377	0.75	[4]
5	PAni-PAAm-GOCS	1.81	2.56	[5]
6	PVA/MXene-Ag/sucrose	0.025	3.92	[6]
7	cotton/graphene inks	0.02	22.6	[7]
8	PVA/PEI	0.96	22	[8]
9	P(AMPS/AAm)-CS	0.111	2.011	[9]
10	RSF/CaCl ₂ /HRP	0.04	2.37	[10]
11	CMC	1.54	0.55	[11]
12	PAM/PDA	0.092	3.4	[12]
13	AMPS/APS/MBA	0.0917	0.2448	[13]
14	PAAc/SiO2-g-PAAm	0.0346	5.86	[14]
14	rBC/MXene	2.5	5.15	This work

sensors[J]. Advanced Materials Technologies, 2018, 3(3): 1700284.

[2] Dong X, Wei Y, Chen S, et al. A linear and large-range pressure sensor based on a graphene/silver nanowires nanobiocomposites network and a hierarchical structural sponge[J]. Composites Science and Technology, 2018, 155: 108-116.

[3] Chen S, Song Y, Ding D, et al. Flexible and anisotropic strain sensor based on carbonized crepe paper with aligned cellulose fibers[J]. Advanced Functional

Materials, 2018, 28(42): 1802547.

- [4] Wu Y, Chen E, Weng X, et al. Conductive polyvinyl alcohol/silver nanoparticles hydrogel sensor with large draw ratio, high sensitivity and high stability for human behavior monitoring[J]. Engineered Science, 2022, 18: 113-120.
- [5] Jin X, Jiang H, Li G, et al. Stretchable, conductive PAni-PAAm-GOCS hydrogels with excellent mechanical strength, strain sensitivity and skin affinity[J]. Chemical Engineering Journal, 2020, 394: 124901.
- [6] Li C, Zheng A, Zhou J, et al. A self-adhesive, self-healing and antibacterial hydrogel based on PVA/MXene-Ag/sucrose for fast-response, high-sensitivity and ultra-durable strain sensors[J]. New Journal of Chemistry, 2023, 47(14): 6621-6630.
- [7] Li K, Yang W, Yi M, et al. Graphene-based pressure sensor and strain sensor for detecting human activities[J]. Smart Materials and Structures, 2021, 30(8): 085027.
- [8] Wang C, Hu K, Zhao C, et al. Customization of conductive elastomer based on PVA/PEI for stretchable sensors[J]. Small, 2020, 16(7): 1904758.
- [9] Jin R, Xu J, Duan L, et al. Chitosan-driven skin-attachable hydrogel sensors toward human motion and physiological signal monitoring[J]. Carbohydrate Polymers, 2021, 268: 118240.
- [10] Zhao B, Chen Q, Da G, et al. A highly stretchable and anti-freezing silk-based conductive hydrogel for application as a self-adhesive and transparent ionotronic skin[J]. Journal of Materials Chemistry C, 2021, 9(28): 8955-8965.
- [11] Li J, Chen F, Lin X, et al. Hydrogen-bonding-assisted toughening of hierarchical carboxymethyl cellulose hydrogels for biomechanical sensing[J]. Carbohydrate Polymers, 2021, 269: 118252.
- [12] Zhang G, Chen S, Peng Z, et al. Topologically enhanced dual-network hydrogels with rapid recovery for low-hysteresis, self-adhesive epidemic electronics[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12531-12540.
- [13] Mao J, Zhao C, Liu L, et al. Adhesive, transparent, stretchable, and strainsensitive hydrogel as flexible strain sensor[J]. Composites Communications, 2021, 25: 100733.
- [14] Yu X, Zheng Y, Zhang H, et al. Fast-recoverable, self-healable, and adhesive nanocomposite hydrogel consisting of hybrid nanoparticles for ultrasensitive strain and pressure sensing[J]. Chemistry of materials, 2021, 33(15): 6146-6157.