Improved Resistive Switching Performance through Donor-Acceptor Structure

Construction in Memristors Based on Covalent Organic Framework Films

Dongchuang Wu, ^a Qiongshan Zhang, ^c Ning Gu, ^b Yang Cao, ^c Youyi Sun, ^b* Bin Zhang ^c*

and Yu Chenc*

^a School of Energy and Power Engineering, North University of China, Taiyuan 030051,

China;

^b School of Materials Science and Technology, North University of China, Taiyuan 030051, China;

^c Key Laboratory for Advanced Materials and Joint International Research Laboratory

of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular

Engineering, East China University of Science and Technology, Shanghai 200237, China;

cinita,

Materials

1,3,5-triformylphloroglucinol (TP) was synthesized following the previously reported literature protocols. ¹ Tris(4-aminophenyl)amine (TAPA), acetic acid (CH₃COOH) and 1,3,5-triformylbenzene (TFB) were purchased from Macklin and used directly in the interfacial polymerization reaction. Dichloromethane (DCM), Ethanol, acetone, and 2-propanol were purchased from Aladdin. All compounds was used without further purification.

Instruments

Fourier transform infrared (FTIR) spectra were recorded by Spectrum 100 spectrophotometer (Perkin Elmer, Inc., USA). The scanning electron microscopy (SEM) images were recorded on a field emission scanning electron microscope (FESEM, Carl Zeiss Gemini) operating at an accelerating voltage of 3 kV. High magnification transmission electron microscopy (TEM) was performed using a JEOL-2100 (JEOL Ltd., Japan) TEM system operating at an accelerating voltage of 200 kV. ¹³C crosspolarization/magic angle spinning solid-state nuclear magnetic resonance (CP/MAS ssNMR) experiments were performed on a Bruker AVANCE III 400 WB spectrometer operating at 100.62 MHz for ¹³C using a double resonance 4 mm MAS NMR probe and a sample spinning rate of 10 kHz. The cross polarization time was 1 ms. The chemical shifts were referenced with adamantane. Atomic force microscopy (AFM) was measured on a Solver P47-PRO (NT-MDT Co., Moscow, Russia) microscope, and a Bruker Dimension Icon scanning probe microscope, respectively. Thermal gravimetric analyses (TGA) were performed on a Perkin-Elmer TGA-7 thermogravimetric analyzer in nitrogen atmosphere from ambient temperature to

800 $^\circ \! \mathbb{C}$ at the rate of 10 $^\circ \! \mathbb{C}$ min⁻¹. Powder X-ray diffraction patterns were recorded on

a Bruker D8 Advance diffractometer with Cu-K α 1 radiation (λ =1.5406 Å). UV-vis diffuse reflectance spectra (UV-vis DRS) were recorded at room temperature on a HITACHI U-4100 Spectrophotometer. 1H NMR spectra were recorded on a Bruker Avance 400 NMR spectrometer, operating at frequencies of 400 MHz using CDCl₃ as solvent. X-ray photoelectron spectroscopy (XPS) experiments were carried out on an AXIS Ultra DLD system from Kratos with mono Al K α radiation (1486.6 eV) as X-ray source, the C 1s value was set at 284.6 eV for charge corrections.

Synthesis of triformylphloroglucinol (TP)¹

To hexamethylenetetraamine (15 g, 108 mmol) and dried phloroglucinol (6 g, 49 mmol) under N₂ was added 90 mL trifluoroacetic acid. The solution was heated at 100 $^{\circ}$ C for ca. 2.5 h. Approximately 150 mL of 3 M HCl was added and the solution was heated at 100 $^{\circ}$ C for 1 h. After cooling to room temperature, the solution was filtered through Celite, extracted with ca. 350 mL dichloromethane, dried over magnesium sulfate, and filtered. Rotary evaporation of the solution afforded 1.48 g (7.0 mmol, 14%) of an off-white powder. ¹H NMR (300 MHz, CDCl3) δ 14.10 (s, 3H, OH), 10.14 (s, 3H, CHO) ppm;

Fabrication of the COF thin films

The COF films were fabricated via interfacial reaction between aldehyde and amine building blocks at room temperature and atmospheric pressure. TAPA (17.4 mg, 0.06 mmol) and TP (12.6 mg, 0.06 mmol) or TP (9.7 mg, 0.06 mmol) were dissolved in 100 ml of DCM as the organic phase. The TAPA and TP solutions were poured into a beaker together as the organic phase, and then pure water was slowly added onto the top surface of the DCM solution, leaving a stable DCM/water interface. Subsequently, 0.5 ml of aqueous acetic acid (3.0 M) was gently added into the aqueous phase as the catalyst. Afterward, the beaker was covered to keep it under a stable condition and avoid airflow. A transparent and smooth thin film was clearly observed at the interface between the two immiscible phases. After interfacial reaction for 3 days at room temperature, the water was pumped out slowly and the thin film was floated on the quiet DCM solution. The thin film was transferred to an ITO substrate, which had been carefully precleaned sequentially with deionized water, acetone, and 2-propanol in an ultrasonic bath for 15 min. And then it was rinsed several times by ethanol and DCM to wash away the residual monomers. In order to completely remove monomers, the film supported by ITO was immersed in DCM for 10h. The clean film was used to further characterizations and the fabrication of devices.

Device fabrication

The film supported by ITO was followed by the removal of the solvent under vacuum at 60°C overnight. Al top electrodes were deposited on the surface of active layer through a shadow mask at 10⁻⁷ Torr via E-beam evaporation. All electrical measurements were performed on a Keithley 4200 semiconductor parameter analyzer in ambient condition without any device encapsulation.

Energy levels calculation

The HOMO or LUMO levels and energy bandgaps of TAPA-TP can be electrochemically estimated from the equation. HOMO or LUMO = $-(E_{onset} - E_{ox(ferrocene)}) - 4.8$ using the onset potentials (vs. Ag/Ag⁺) of the materials. Here, the reference energy level of ferrocene was considered as 4.8 eV. The onset oxidation potential of ferrocene was observed to be 0.38 V vs. Ag/Ag⁺. The first oxidation and reduction potentials for TAPA-TP were found to be +0.98 V versus Ag/Ag⁺ and -0.65 V versus Ag/Ag⁺, respectively. As a result, the estimated HOMO energy level, and the LUMO energy level of TAPA-TP are -5.4V and -3.77V, respectively.

Figure S1. HRTEM image of (001) plane in TAPA-TP.

Figure S2. TGA curves of TAPA-TP and TAPA-TFB at a heating rate of 10 ^oC min⁻¹ under a nitrogen atmosphere.

Figure S3. Effect of continuous read pulses of 0.1V (pulse width: 10 μ s; pulse period: 20 μ s)

Figure S4. I–V characteristics of AI/TAPA-TP/ITO under negative voltage sweeps.

Figure S5. The I-V curves of 100 devices

Figure S6. Cyclic voltammogram for TAPA-TP at ambient temperature. Scan rate: 100 mV s⁻¹. Reference electrode: Ag/AgCl. Electrolyte: Bu_4NPF_6 (0.1 M) in deaerated acetonitrile.

Figure S7. Energy levels of the TAPA-TP film and the electrodes

Figure S8. The eclipsed (AA) stacking mode of TAPA-TP

Figure S9. The eclipsed (AA) stacking mode of TAPA-TFB

Space group	P1			
Calculated unite cell	a = b = 15.8604 Å, c = 3.4093 and α=β= 90°, γ=60°			
Atom	Х	У	Z	
C1	0.272612	0.402344	0.299122	
C2	0.212555	0.35713	0.298601	
C3	0.25344	0.25289	0.257208	
C4	0.358861	0.19227	0.261853	
C5	0.422458	0.233322	0.263801	
C6	0.377374	0.338254	0.302561	
C7	0.43836	0.374866	0.37338	
C8	0.396861	0.092757	0.310356	
С9	0.114611	0.416736	0.373526	
C10	0.460632	0.511154	0.501084	
C11	0.428276	0.608198	0.384704	
C12	0.489594	0.646153	0.413733	
C13	0.583748	0.590917	0.576894	
C14	0.610887	0.496929	0.727099	
C15	0.552017	0.456724	0.683964	
C16	0.614657	0.728228	0.556277	
C17	0.521115	0.795293	0.69199	
C18	0.480605	0.894748	0.628315	
C19	0.534109	0.932055	0.436704	
C20	0.63083	0.867208	0.335226	
C21	0.669252	0.767501	0.386743	
C22	0.751887	0.559514	0.574892	
C23	0.817797	0.586819	0.71182	
C24	0.917077	0.528616	0.66485	
C25	0.955412	0.437674	0.488409	
C26	0.891755	0.404765	0.387252	
C27	0.792082	0.465391	0.422185	
01	0.233922	0.494774	0.309213	
02	0.19957	0.215112	0.229894	
03	0.51455	0.179579	0.243069	
N1	0.404036	0.470172	0.417448	
N2	0.492676	0.030316	0.337601	
N3	0.053153	0.382359	0.397608	
N4	0.650053	0.626177	0.587326	
H1	0.327711	0.510956	0.371328	
H2	0.532811	0.066375	0.290453	
Н3	0.088121	0.307694	0.32899	
H4	0.356919	0.651732	0.245139	

Table S1. Fractional atomic coordinates for the eclipsed AA-stacking unit cell of TAPA-TP.

H5	0.463532	0.719977	0.302158
H6	0.680174	0.453864	0.877357
H7	0.576127	0.38323	0.801862
H8	0.478698	0.768932	0.848323
Н9	0.407737	0.944102	0.738496
H10	0.674004	0.895173	0.191527
H11	0.743104	0.719684	0.289079
H12	0.790475	0.656025	0.854136
H13	0.965257	0.553214	0.774132
H14	0.920569	0.333548	0.254815
H15	0.745121	0.438909	0.322753
H16	0.516763	0.323982	0.39578
H17	0.087385	0.494239	0.418865
H18	0.34649	0.064827	0.335471

Table S2. Fractional atomic coordinates for the eclipsed AA-stacking unit cell of TAPA-TFB.

Space group	P1			
Calculated unite cell	a = b = 15.8479 Å, c = 3.4093 and α = β = 90°,			
	γ=60°			
Atom	x	у	z	
C1	0.738085	0.283336	0.395329	
C2	0.675199	0.383001	0.380868	
C3	0.581168	0.422821	0.224068	
C4	0.554827	0.357248	0.071899	
C5	0.615599	0.257703	0.100719	
C6	0.707904	0.218548	0.272029	
C7	0.37307	0.505832	0.381982	
C8	0.273427	0.542466	0.395773	
С9	0.208508	0.637399	0.271366	
C10	0.247548	0.690665	0.099986	
C11	0.347106	0.651986	0.071476	
C12	0.412792	0.560078	0.22438	
C13	0.495755	0.685167	0.379813	
C14	0.532373	0.748138	0.392478	
C15	0.62731	0.718042	0.267608	
C16	0.680588	0.62568	0.096712	
C17	0.641945	0.56481	0.069497	
C18	0.550031	0.59113	0.222934	
C19	0.756018	0.742821	0.382032	

C20	0.802131	0.801855	0.406671
C21	0.746212	0.903999	0.409947
C22	0.791546	0.959832	0.409526
C23	0.893717	0.91352	0.41293
C24	0.949637	0.812311	0.409512
C25	0.903362	0.756491	0.410036
C26	0.054897	0.766094	0.386686
C27	0.7325	0.065072	0.386519
H1	0.810095	0.253743	0.523779
H2	0.699957	0.430618	0.492821
H3	0.484975	0.384999	0.931085
H4	0.592958	0.209179	0.975276
H5	0.420765	0.433502	0.494898
H6	0.243925	0.499997	0.524637
H7	0.198929	0.761841	0.974122
H8	0.374764	0.694146	0.930273
Н9	0.423437	0.709865	0.493271
H10	0.489894	0.820147	0.521009
H11	0.751771	0.603029	0.970503
H12	0.684143	0.49491	0.928965
H13	0.948487	0.677171	0.40532
H14	0.666882	0.938239	0.405127
H15	0.927908	0.958616	0.410349
H16	0.804759	0.663314	0.417135
H17	0.085683	0.814733	0.42292
H18	0.652963	0.095923	0.4213
N1	0.514666	0.524682	0.216027
N2	0.664252	0.780369	0.316648
N3	0.109174	0.674365	0.320644
N4	0.770132	0.119223	0.321842

Device structure	Memory effect	Turn-on voltage (V)	ON/OFF ratio	Switching mechanism	Reference
Ag /2DP _{BTA+PDA} / ITO	Binary RRAM	0.9	>105	Ag filament	R2
LIF/AI/PI-NT COF film/ITO	WORM	2.3	>106	Electric-field-induced	R3
				charge transfer	
Ag /COF-BT-TT/ ITO	Binary RRAM	1.3	10 ⁵	Ag filament	R4
Ag /COF-5 film/ ITO	Binary RRAM	-0.94	10 ³	Ag filament	R5
Au /2DP _{TPAK+TAPB} / ITO	WORM	1.52	10 ³	Electric-field-induced	R6
				charge transfer	
Ag /SL-2DP _{TAPB+TPOC8} / ITO	Binary RRAM	0.6	<100	Ag filament	R7
AI/TFPB-PDAN/ITO	Binary RRAM	0.84	2.07 × 10 ²	Electric-field-induced	R8
				charge transfer	
AI/TAPA-TP/ITO	Binary RRAM	+0.9	7.39×10 ²	Electric-field-induced	This work
				charge transfer	

Table S3. The memory parameters of COF-based memristors.

Reference

1. J. H. Chong, M. Sauer, B. O. Patrick and M. J. MacLachlan, Org. Lett., 2003, 5, 3823-3826.

2. J. Liu, F. Yang, L. Cao, B. Li, K. Yuan, S. Lei and W. Hu, Adv. Mater., 2019, **31**, e1902264.

3. B. Sun, X. Li, T. Feng, S. Cai, T. Chen, C. Zhu, J. Zhang, D. Wang and Y. Liu, ACS Appl. Mater. Interfaces, 2020, **12**, 51837-51845.

4. C. Li, D. Li, W. Zhang, H. Li and G. Yu, Angew. Chem., Int. Ed., 2021, **60**, 27135-27143.

5. T. Li, H. Yu, Z. Xiong, Z. Gao, Y. Zhou and S.-T. Han, Mater. Horiz., 2021, 8, 2041-2049.

6. Y. Song, G. Feng, L. Wu, E. Zhang, C. Sun, D. Fa, Q. Liang, S. Lei, X. Yu and W. Hu, *J. Mater. Chem. C,* 2022, **10**, 2631-2638.

7. L. Liu, B. Geng, W. Ji, L. Wu, S. Lei and W. Hu, *Adv. Mater.*, 2023, **35**, 2208377.

8. D. Wu, Q. Che, H. He, M. E. El-Khouly, S. Huang, X. Zhuang, B. Zhang and Y. Chen, *ACS Materials Lett.*, 2023, **5**, 874-883.