Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

## **Electronic Supplementary Information:**

а

## Unusual red luminescence and super thermal stability of a new

## narrow band emission phosphor for backlight display application

Qiu Zong <sup>a</sup>, Dan Zhao <sup>a,\*</sup>, Rui-Juan Zhang <sup>a</sup>, Qing-Xia Yao <sup>b,\*</sup>, Lei Jia <sup>a</sup>, Meng-Han Yu



Figure S1. The rietveld refinement of the powder XRD profiles of (a) CBO, (b) CBO: $0.02Eu^{2+}$ , (c) CBO: $0.06Eu^{2+}$ , (d) CBO: $0.08Eu^{2+}$ , and (e) CBO: $0.10Eu^{2+}$ , respectively; (f) The Volume of CBO: $xEu^{2+}$  (x = 0.00-0.10).

| x                         | 0.00            | 0.02    | 0.04    | 0.06    | 0.08    | 0.10    |  |  |
|---------------------------|-----------------|---------|---------|---------|---------|---------|--|--|
| Crystal System            | Trigonal system |         |         |         |         |         |  |  |
| Space Group               | <i>R</i> -3c    |         |         |         |         |         |  |  |
| <i>a</i> (Å)              | 8.6331          | 8.6316  | 8.6289  | 8.6313  | 8.6330  | 8.6326  |  |  |
|                           | (139)           | (151)   | (204)   | (123)   | (141)   | (89)    |  |  |
| c (Å)                     | 11.8681         | 11.8794 | 11.8725 | 11.8777 | 11.8679 | 11.8736 |  |  |
|                           | (280)           | (299)   | (405)   | (245)   | (284)   | (175)   |  |  |
| $\beta$ (Å)               | 90              | 90      | 90      | 90      | 90      | 90      |  |  |
| γ (Å)                     | 120             | 120     | 120     | 120     | 120     | 120     |  |  |
| V (Å <sup>3</sup> )       | 766.485         | 766.333 | 766.302 | 766.032 | 765.991 | 765.566 |  |  |
|                           | (27)            | (29)    | (39)    | (24)    | (27)    | (18)    |  |  |
| $U_{ m iso}$              | 0.03959         | 0.03879 | 0.03390 | 0.02217 | 0.00946 | 0.00399 |  |  |
| 2θ-Interval (°)           | 5-75            |         |         |         |         |         |  |  |
| Ζ                         | 6               |         |         |         |         |         |  |  |
| $R_{\mathrm{wp}}$ (%)     | 5.99            | 11.76   | 11.60   | 8.31    | 11.98   | 8.89    |  |  |
| <i>R</i> <sub>p</sub> (%) | 4.23            | 7.90    | 7.87    | 5.54    | 7.93    | 6.07    |  |  |
| $\chi^2$                  | 1.12            | 2.46    | 1.51    | 2.15    | 2.51    | 2.71    |  |  |

Table S1. Refined Crystallographic Parameters of the CBO: $xEu^{2+}$  (x = 0-0.10) Samples.



**Figure S2.** (a) and (b) SEM diagrams of CBO:Eu<sup>2+</sup> phosphor at different magnification; (c) element mappings of Ca, B, O and Eu; (d) element content analysis of Ca, B, O and Eu.

| phosphor                                           | The strongest<br>PLE peak | PLE range  | The strongest<br>PL peak | PL range   | FWHM           |
|----------------------------------------------------|---------------------------|------------|--------------------------|------------|----------------|
| Sr <sub>2</sub> SiN <sub>8</sub> :Eu <sup>2+</sup> | ~395 nm<br>~450 nm        | 250-570 nm | 610 nm                   | 500-750 nm | 85 nm          |
| Y <sub>2</sub> O <sub>3</sub> :Eu <sup>3+</sup>    | 260 nm                    | 230-600 nm | 624 nm                   | 500-730 nm | Sharp emission |
| CaAlSiN <sub>3</sub> :Eu <sup>2+</sup>             | 466 nm                    | 200-600 nm | 650 nm                   | 500-800 nm | 100 nm         |
| K <sub>2</sub> SiF <sub>6</sub> :Mn <sup>4+</sup>  | ~420 nm<br>~455 nm        | 300-500 nm | 631 nm                   | 610-650 nm | Sharp emission |
| CBO:Eu <sup>2+</sup>                               | 465 nm                    | 400-625 nm | 640 nm                   | 570-725 nm | 50 nm          |

Table S2. Optical properties of CBO:Eu<sup>2+</sup> and commercial phosphors.

Thanks to highly condensed network structure, CBO:0.04Eu<sup>2+</sup> shows a surprising narrow-band red emission at 640 nm with FWHM of only 50 nm under 465 nm excitation. Therefore, such PLE band of CBO:0.04Eu<sup>2+</sup> matches well with the blue LED chip. As shown in the inset (Fig. 3b), the as-prepared powder gives a red light under 365 nm lamp irradiation, and CBO:0.04Eu<sup>2+</sup> displays a pale red body color under natural light which is since the phosphor absorbs part of the short-wavelength visible light. Moreover, the peak wavelengths and FWHM values of CBO:*x*Eu<sup>2+</sup> are basically unchanged for different Eu<sup>2+</sup> doping concentrations (Fig. 3a). The corresponding PLE spectrum of CBO:0.04Eu<sup>2+</sup> monitored at 640 nm exhibits a broad band from 560 to 750 nm, indicating that it can be excited by blue to red light.



**Figure S3.** (a) The relative intensity of CBO: $xEu^{2+}$  dependent on the  $Eu^{2+}$  content. (d) Fitting line of  $\log(I/x)$  versus  $\log(x)$  in CBO:xEu (x = 0.04-0.10) phosphors.

The nonradiative energy migration mainly contains three possible pathways: electric-multipolar interaction, radiation reabsorption, and exchange interaction ( $R_c$ ) between activators. To clarify the energy-transfer mechanism of CBO: $xEu^{2+}$ , the critical distance was calculated by eq 1:<sup>1</sup>

$$R_c = 2\left(\frac{3V}{4\pi x_c N}\right)^{1/3}$$
(1)

where  $x_c$  represents the optimized concentration of Eu<sup>2+</sup> in the CBO host, V stands for the unit cell volume, and N denotes the number of ion sites for Eu<sup>2+</sup> per unit cell. For the CBO host,  $x_c = 0.04$ , N = 6, and V = 765.61 Å<sup>3</sup> calculates that the  $R_c$  value is about 12.66 Å. It is well-known that exchange interaction is the dominant role only if  $R_c$  is shorter than 5 Å, and thus the concentration quenching in CBO:*x*Eu is more likely through the electric–multipolar interaction. Moreover, the multipolar interaction type can be determined by the following equation 2:

$$\frac{l}{x} = k[1 + \beta(x)^{\frac{\theta}{3}}]^{-1}$$
(2)

where *I* is the emission intensity at the current concentration, *x* means the Eu<sup>2+</sup> concentration, and the values of *k* and  $\beta$  are constant. The constant  $\theta$  determines the type of electric-multipolar interaction, for which  $\theta = 6$ , 8, and 10 refers to dipole-dipole (d-d), dipole-quadrupole (d-q), and quadrupole-quadrupole (q-q) interactions,<sup>2-4</sup> respectively, whereas  $\theta = 3$  represents the energy migration between nearest or next nearest Eu<sup>2+</sup> cations. Equation 2 can be reduced to eq 3 because  $\beta(x)^{\theta 3} \gg 1$ , as follows:

$$\log\left(\frac{I}{x}\right) = K - \frac{\theta}{3}logx \quad (K = logk - logb) \quad (3)$$

Fig. S3b shows the dependence of  $\log(I/x)$  on  $\log(x)$ , which can be fitted linearly, and the slope equals -3.2035. Thus, the  $\theta$  value is calculated as 9.6105, close to 10, implying that the quenching mechanism originates from the quadrupole-quadrupole interactions.



Figure S4. PL and PLE spectra of SBO: Eu<sup>2+</sup> phosphor, the inset shows XRD for Eu<sup>2+</sup>-doped SBO.

The external quantum efficiency (EQE) and internal quantum efficiency (IQE) of phosphor CBO:0.04Eu were measured using an integrated sphere on a FLS1000 instrument with a BaSO<sub>4</sub> blank tablet as reference (Fig. S5). The EQE and IQE, as well as absorption efficiency ( $\alpha_{abs}$ ), could be obtained by equations (4), (5), and (6):<sup>5</sup>

$$EQE = \frac{\varepsilon}{\delta} = \frac{\int L_S}{\int E_R} (4)$$
$$IQE = \frac{\varepsilon}{\alpha} = \frac{\int L_S}{\int E_R - \int E_S} (5)$$
$$\alpha_{abs} = \frac{\alpha}{\delta} = \frac{\int E_R - \int E_S}{\int E_R} (6)$$

where  $\alpha$  means the absorbed photon numbers,  $\varepsilon$  means the emitting photon numbers,  $\delta$  represents the number of excited photons by the light source,  $L_{\rm S}$  means the emission spectrum,  $E_{\rm R}$  stands for the total reflection spectrum of BaSO<sub>4</sub> reference, and  $E_{\rm S}$  represents the reflection spectrum of CBO:0.04Eu<sup>2+</sup>. Accordingly, the  $\alpha_{\rm abs}$ , *IQE*, and *EQE* for phosphor CBO:0.04Eu<sup>2+</sup> were calculated to be 24 %, 15 %, and 42 %.



Figure S5. (a) excitation line of  $BaSO_4$  and emission spectrum of  $CBO:0.04Eu^{2+}$  phosphor collected by using an integrating sphere; (b) CIE chromaticity diagram of  $CBO:0.04Eu^{2+}$ .



**Figure S6.** (a) The temperature-dependent PL spectra of CBO:0.04Eu<sup>2+</sup> at different temperatures from 25 to 300 °C; (b) FWHM of CBO:0.04Eu<sup>2+</sup> in different temperatures.

## Notes and references

- 1 D. L. Dexter, J. Chem. Phys. 1953, 21, 836-850.
- 2 G. Blasse, Philips Res. Rep. 1969, 24, 131-144.
- 3 G. Blasse, Phys. Lett. A. 1968, 28 (6), 444-445.
- 4 L.G. Van Uitert, J. Lumin. 1984, 29, 1-9.
- 5 K. Ohkubo, T. Shigeta, J. Illum, J. Illum. Eng. Inst. Jpn. 1999, 83, 87-93.