
| 1  | Industrial-friendly rapid printing of stretchable liquid metal                    |
|----|-----------------------------------------------------------------------------------|
| 2  | circuit for patch-mode wearable healthcare device                                 |
| 3  |                                                                                   |
| 4  | Yanling Jia <sup>1,*</sup> , Ke Zhang <sup>2,*</sup>                              |
| 5  |                                                                                   |
| 6  | <sup>1</sup> College of Advanced Materials Engineering, Jiaxing Nanhu University, |
| 7  | Jiaxing 314000, China                                                             |
| 8  | <sup>2</sup> Key Laboratory of Intelligent Sensing Materials and Chip Integration |
| 9  | Technology of Zhejiang Province, Hangzhou Innovation Institute, Beihang           |
| 10 | University, Hangzhou 310052, China                                                |
| 11 |                                                                                   |
| 12 | * Corresponding author                                                            |

13 E-mail: jiayl2021@163.com, cr7zhangke\_hz@buaa.edu.cn

## 1 Figure S1



- 2
- Figure S1. SALP-prepared patterns of (a) opera facial makeup, (b) 3
- butterfly and (c) two-dimensional code. (d) Recognition result of 2D code 4
- in Figure S1c. (e) Numbers and letters patterns by SALP. 5
- 6
- 7 Figure S2

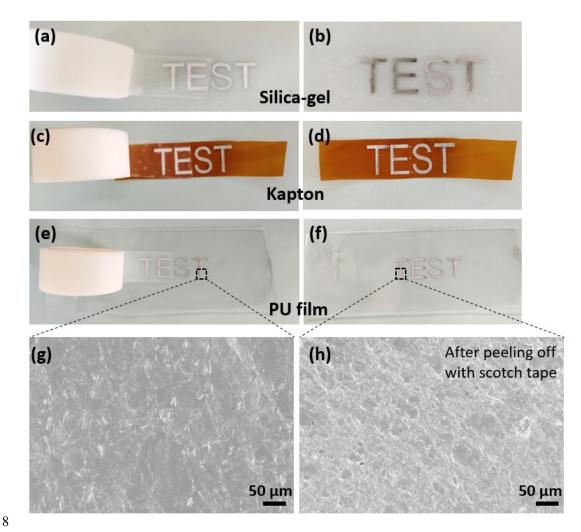
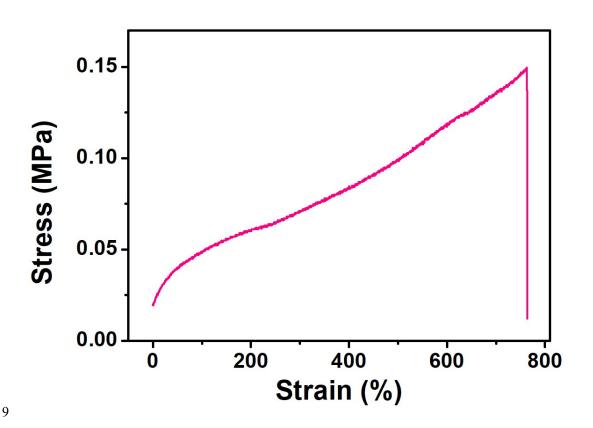
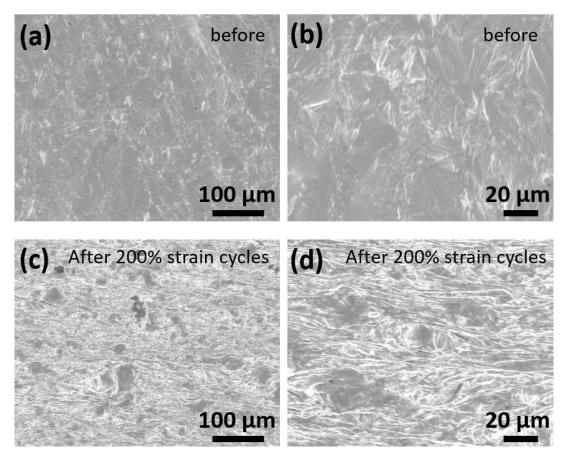




Figure S2. The optical images of liquid metal pattern printed by SALP
before and after peeling off with scotch tape, on (a-b) silica-gel substrate,
(e-f) Kapton substrate and (e-f) PU substrate, respectively. (g-h) The SEM
images of the surface of liquid metal pattern on PU substrate before and
after peeling off with scotch tape, respectively.

6

```
7 Figure S3
```






10 Figure S3. Stress-strain relationship of PU film.

11

12 Figure S4



1

2 Figure S4. The SEM images of the liquid metal electrode (a-b) before and (c-d) after
3 stretching by 200% strain cycles, respectively.

4

## 5 Table S1

- 6 Table S1. Reference parameters of linear function relationship between
- 7 shadow mask size and the actual size under various prestretching
- s conditions (y=kx+b, y is actual size ( $\mu$ m) and x is mask size (mm)).

| Strain | k      | b     |
|--------|--------|-------|
| 100%   | 507.23 | 46.29 |
| 200%   | 365.22 | 52.31 |
| 300%   | 284.33 | 42.42 |
| 400%   | 222.10 | 29.64 |
| 500%   | 207.43 | 21.79 |
| 600%   | 187.51 | 13.42 |