Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information

for

Skin-mimetic tough polyurethane ionogel for use as soft ionotronics

Bin Hong,¹ Yiyan Xu,¹ Jun Tan,^{2,*} Zeming Xie,³ Si Yu Zheng,^{3,*} Qi Wang,^{1,4,*} Zhijun Zhou,¹ Jintao Yang^{3,*}

1 Zhejiang Hexin New Material Co., Ltd., Jiaxing 314000, P. R. China

2 College of Biological, Chemical Science and Technology, Jiaxing University, Jiaxing 314001, P. R. China

3 Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science& Engineering. Zhejiang University of Technology, Hangzhou 310014, P. R. China

4 Hexin Kuraray Micro Fiber Leather (Jiaxing) Co., Ltd., Jiaxing 314000, P. R. China

Sample –	Molar ratio				— II - (40/)	S - I4
	HDI	PTMG-2000	SB-diol	BDO	— IL\$ (Wt%)	Solvent
ZPU1-40%ILs	10	5	1	4	40	THF
ZPU2-40%ILs	10	5	2	3	40	THF
ZPU3-40%ILs	10	5	3	2	40	THF
ZPU4-40%ILs	10	5	4	1	40	THF

Table S1. Composition of Samples.

Sample –	Molar ratio				— II - (40/)	S - 1
	HDI	PTMG-2000	SB-diol	BDO	— ILS (Wt%)	Solvent
ZPU1-40%ILs	10	5	1	4	40	THF/DMF
ZPU2-40%ILs	10	5	2	3	40	THF/DMF
ZPU3-40%ILs	10	5	3	2	40	THF/DMF
ZPU4-40%ILs	10	5	4	1	40	THF/DMF

Table S2. Composition of Samples.

Sample –	Molar ratio				— II - (49/)	S - I4
	HDI	PTMG-2000	SB-diol	BDO	— ILS (Wt%)	Solvent
ZPU4-20%ILs	10	5	4	1	20	THF
ZPU4-60%ILs	10	5	4	1	60	THF
ZPU4-80%ILs	10	5	4	1	80	THF

Table S3. Composition of Samples.

Figure S1. (a) Reaction routes for synthesis of SB-diol. (b) ¹H NMR spectra of SB-diol chain extender at 400 MHz, D₂O.

Figure S2. Schematic preparation process of the ZPU ionogel.

Figure S3. Optical appearance of the ILs dispersion by using pure THF as solvent (left) and using THF/DMF as solvent (right).

Figure S4. TEM images of the ZPU ionogel from casting ZPU emulsion (left) and solution (right).

Maximum tensile strain (%)

Figure S5. Residual strain of ZPU ionogels stretched to different strain.

Figure S6. Hysteresis loop area of ZPU ionogels stretched to different strain.

Figure S7. Self-recovery performance of the ZPU ionogels.

Figure S8. Conductivity of the ZPU ionogel with different zwitterionic content.

Figure S9. Digital photographs of the ZPU/IL@Sponge acting as a conductor and lighting an LED bulb.