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S1. Supplementary Figures and Tables

Figure S1. Convergence of the total energy of the pristine SnS model with respect to plane-wave 

cutoff (a) and -point sampling (b).𝑘

Figure S2. Optimised structure of Pmcn SnS shown along the a (a), b (b) and c axes (c). These images 

were generated using VESTA software.1
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Figure S3. SEM image of the 2.78% sample and EDX spectra showing the atomic composition of the 

two marked areas. (c) corresponds to a Ag-rich area consistent with the Ag2SnS3 secondary phase 

identified in the XRD measurements.
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Figure S4. Total and atom-projected (partial) density of states of the pristine SnS (a/b) and 2.78% Ag-

doped models (c/d) calculated at the PBEsol (a/c) and HSE06 (b/d) levels of theory.



S5

Figure S5. Calculated temperature-dependent Lorenz number  for the SnS and Ag-doped SnS 𝐿

samples obtained from Equation (9) in the main text.2

Figure S6. Temperature-dependent thermal diffusivity  of the SnS and Ag-doped SnS samples.𝐷
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Figure S7. Temperature-dependent out-of-plane total thermal conductivity , i.e. parallel to 𝜅(||)

pressing direction, for the SnS and Ag-doped SnS samples.

Table S1. Density and relative density of the SnS and Ag-doped SnS samples.

Samples Density (g/cm3 ± 3%) Relative density (%)

SnS 5.09 93.1

0.78% 5.08 92.9

1.56% 4.90 89.7

2.78% 4.94 90.5

Table S2. Average grain sizes of the SnS and Ag-doped SnS samples estimated by the line-intercept 

method.

Grain size ( m)𝜇

SnS 0.7

0.78% 0.8

1.56% 2.8

2.78% 3.7
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Table S3. Sample compositions (atomic ratios and actual Ag content) of the SnS and Ag-doped SnS 

samples measured using EDX.

Atom %
Sample

Sn S Ag

Actual Ag contents (x) 

at.%

SnS 49.9 ± 0.1 50.1 ± 0.1 ------ ------

0.78% 51.5 ± 0.3 48.2 ± 0.3 0.3 ± 0.1 0.6 ± 0.2

1.56% 49.1 ± 0.9 50.2 ± 1.0 0.7 ± 0.1 1.4 ± 0.4

2.78% 49.4 ± 1.1 49.3 ± 0.9 1.3 ± 0.2 2.6 ± 0.7
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S2. Supplementary Methods: Calculation of the In-Plane Thermal Conductivity

The in-plane thermal conductivity , i.e. perpendicular to the SPS pressing direction, was 𝜅( ⊥ )

estimated from the out-of-plane measurements, i.e. parallel to the SPS pressing direction , based 𝜅(||)

on the ratio  obtained in other experiments on SnS ceramics.3-5 As shown in Figure S8, the 𝜅(||) 𝜅( ⊥ )

 ratio ranges from 0.62 to 0.83, suggesting that the anisotropy falls within this range.6 Using 𝜅(||) 𝜅( ⊥ )

the average  = 0.73, we estimated the in-plane  from our measurements of the out-of-𝜅(||) 𝜅( ⊥ ) 𝜅

plane , and the results are shown in Figure S9.𝜅

Figure S8. Ratios of the lattice thermal conductivity  measured parallel and perpendicular to the 𝜅𝐿

SPS pressing direction, , for SnS ceramics prepared in previous studies.3-5𝜅(||) 𝜅( ⊥ )
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Figure S9. Estimated in-plane total thermal conductivity  and lattice thermal conductivity  for SnS, 𝜅 𝜅𝐿

0.78%, 1.56% and 2.78% ceramic samples. 
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S3. Supplementary Methods: Electrical-Transport Calculations

Electronic-structure calculations were used to model the electrical-transport properties, viz. the 

Seebeck coefficient , electrical conductivity , power factor  (PF) and electronic thermal 𝑆 𝜎 𝑆2𝜎

conductivity , using semi-classical Boltzmann transport theory within the constant relaxation time 𝜅𝑒

approximation (CRTA), as implemented in the AMSET code.7

The spectral conductivity tensors  for an electronic state with band index  and Σ𝛼𝛽(𝑖, 𝑘) 𝑖

wavevector  are determined from:𝑘

where  and  are the electron group  Σ𝛼𝛽(𝑖, 𝑘) =  𝑒2𝑣𝛼(𝑖, 𝑘)𝑣𝛽(𝑖, 𝑘)𝜏(𝑖, 𝑘)#(𝑆3.1) 𝑣(𝑖, 𝑘) 𝜏(𝑖, 𝑘)

velocities and relaxation times, respectively, and  is the elementary charge. Energy-projected 𝑒

conductivity tensors  can be obtained by summing over  and averaging over :𝜎𝛼𝛽(𝐸) 𝑖 𝑘

where  is the number of wavevectors in the summation 
Σ𝛼𝛽(𝐸) =  

1
𝑁∑

𝑖, 𝑘

Σ𝛼𝛽(𝑖, 𝑘)
𝛿(𝐸 ‒ 𝐸𝑖, 𝑘)

𝑑𝐸
#(𝑆3.2)

𝑁

and  are the electronic band energies. The ,  and  and can then be calculated from:7, 8𝐸𝑖, 𝑘 𝜎 𝑆 𝜅𝑒

𝜎𝛼𝛽(𝑇;𝜇) =  
1
Ω∫Σ𝛼𝛽(𝐸)[ ‒

∂𝑓(𝐸;𝜇,𝑇)
∂𝐸 ]𝑑𝐸#(𝑆3.3)

𝑆𝛼𝛽(𝑇;𝜇) =
1

𝑒𝑇Ω
𝜎 ‒ 1

𝛾𝛼 × ∫Σ𝛾𝛽(𝐸)(𝜀 ‒ 𝜇)[ ‒
∂𝑓(𝐸;𝜇,𝑇)

∂𝐸 ]𝑑𝐸#(𝑆3.4)

𝜅𝛼𝛽(𝑇;𝜇) =
1

𝑒2𝑇Ω
∫Σ𝛾𝛽(𝐸)(𝐸 ‒ 𝜇)2[ ‒

∂𝑓(𝐸;𝜇,𝑇)
∂𝐸 ]𝑑𝐸#(𝑆3.5)

where  is the chemical potential (equal to the Fermi energy  for a given doping level),  is the cell 𝜇 𝐸𝐹 Ω

volume and  is the Fermi-Dirac distribution function given by:𝑓

𝑓(𝐸,𝜇,𝑇) =
1

𝑒𝑥𝑝[(𝐸 ‒ 𝜇) 𝑘𝐵𝑇] + 1
#(𝑆3.6)
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where  is the Boltzmann constant.𝑘𝐵

In the CRTA model the  in Eq. (S3.1) are treated as a (single) unknown constant . The 𝜏(𝑖,𝑘) 𝜏𝑒

Seebeck coefficient is in principle independent of this parameter, as it is the ratio of two spectral 

conductivity tensors, whereas the conductivity and electrical thermal conductivity are obtained divided 

by this constant, i.e. as  and .
𝜎 𝜏𝑒

𝜅 𝜏𝑒

The transport calculations require as their main input a high-quality uniform electronic band-

structure calculation with a dense -point sampling, i.e. a set of band energies  and corresponding 𝑘 𝐸𝑖, 𝑘

Kohn-Sham orbitals, which are used to calculate the . Based on this, the transport coefficients 𝑣(𝑖, 𝑘)

are determined for a specified set of extrinsic carrier concentrations (“doping levels”) , which 𝑛

determine the  = , temperatures, and an electron relaxation time .𝜇 𝐸𝐹 𝜏𝑒

-point convergence tests were performed on the pristine SnS model using PBEsol, with 𝑘

nominal values of  = 1016 and 1019 cm-3, temperatures from 300-800 K, and a constant  = 4.06 × 𝑛 𝜏𝑒

10-15 s estimated from experiments (Figure S10).4, 9, 10 These tests indicated that using 2-3  denser ×

-point meshes than the “base” mesh used for the geometry optimisation during the electronic-𝑘

structure calculation, and enhancing these by a further 5  using interpolation during the transport ×

calculations, was sufficient to converge the calculated transport properties.

The intrinsic  can be estimated from the calculated electronic density of states  (DoS) 𝑛 𝑔(𝐸)

according to:

𝑛(𝑇) =
∞

∫
𝐸𝐹

𝑓(𝐸,𝜇 = 𝐸𝐹,𝑇)𝑔(𝐸)𝑑𝐸#(𝑆3.7)

Figure S11 shows the calculated PBEsol DoS of pristine SnS with the  at  = 300 and 800 K. 𝑓(𝐸,𝜇,𝑇) 𝑇

The intrinsic  were calculated using this method for a series of temperatures from 300-800 K, and 𝑛
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used in transport calculations to test two further technical parameters.

Firstly, we compared the effect of using two Sn pesudopotentials (PPs), “Sn_d” and “Sn”, the 

latter of which subsumes the semi-core Sn 4d states into the core and thereby halves the number of 

valence electrons per SnS formula unit that need to be treated in the calculations. As shown in Figure 

S12, the two PPs yield very similar DoS curves, calculated , mobilities  and electrical conductivities 𝑛 𝜇

, for both the base and 2/3  -point sampling meshes, but yielded markedly different  and hence 𝜎 × 𝑘 𝑆

power factors  with smaller -point sampling. Based on these tests, we determined that using the 𝑆2𝜎 𝑘

cheaper “Sn” PP, without semi-core states, together with the 2  -sampling chosen from the × 𝑘

convergence tests, is a reasonable approximation.

Having established this, we then checked the convergence of more accurate HSE06 hybrid 

calculations, using the “Sn” PP, with respect to -point sampling. Even with fewer valence electrons 𝑘

per formula unit, the much larger computational cost of calculations with hybrid functionals means 

that we were only able to test the “base” and 2  denser sampling. We therefore also performed non ×

self-consistent calculations,11 where the HSE06 eigenvalues are calculated from PBE Kohn-Sham 

orbitals without self-consistent orbital updates, to access up to 3  denser -point sampling. As shown × 𝑘

in Figure S13, we found that the non self-consistent HSE06 calculations gave similar results to the 

self-consistent calculations, and confirmed that the 2  -point sampling found to converge the × 𝑘

PBEsol transport calculations was also sufficient to converge the HSE06 calculations.

To attempt to compare to the experimental data, transport calculations were performed at each 

of the experimental measurement temperatures over a range of  = 1015-1020 cm-3 and the ,  and  𝑛 𝑆 𝜎 𝜅𝑒

compared to the measured values (Figure S14). Within the CRTA the  are independent of the 𝑆

relaxation time . Comparison of the measured  with the predicted  therefore allows a set of  𝜏𝑒 𝑆 𝑆(𝑛) 𝑛

to be determined that best reproduce the  at each of the measurement temperatures. The  obtained 𝑆 𝜎
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from the CRTA are scaled by the . The ratio of the  obtained with the fitted  and the measured  𝜏𝑒 𝜎 𝑛 𝜎

can thus be used to determine a scale factor for the initial  to derive a fitted relaxation time. We 𝜏𝑒

therefore obtain, for each measurement temperature, a fitted  and  that reproduce the measured  𝑛 𝜏𝑒 𝑆

and  (and hence PFs). The mobility and  with the fitted parameters can also be obtained.𝜎 𝜅𝑒

Figure S15 compares the fitted  and  to the experimental measurements. Both variants of 𝑆 𝜎

HSE06 can reproduce the measured  with a suitable value of , and the  with the fitted  and a 𝑆 𝑛 𝜎 𝑛

scaled . On the other hand, the PBEsol calculation is not able to reproduce the , which makes the 𝜏𝑒 𝑆

fitted parameters somewhat questionable. We attribute this to the underestimated bandgap and 

consequent larger intrinsic  obtained with PBEsol.𝑛

Convergence tests with PBEsol on the three doped models indicated that 2  denser -point × 𝑘

meshes were appropriate for the smaller 1.56% and 2.78% models, whereas a 3  denser mesh was ×

required for the largest 0.78% model due to the small base mesh used for this system. Due to the size 

of the doped models, it was not practical to perform HSE06 calculations with the converged -point 𝑘

meshes. However, we found that, as for pristine SnS, transport calculations with PBEsol would be 

unable to reproduce the measured . Given that the Fermi energy in these models lies within the 𝑆

valence band, this is most likely due to the imposed hole concentration being much higher than 

achieved in the experiments, and the same issue would occur with HSE06 electronic-structure 

calculations. As described in the text, we therefore opted to use the (self-consistent) HSE06 calculation 

on pristine SnS with the 2  denser -point mesh to analyse all three experimental samples.× 𝑘
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Figure S10. Predicted ,  and  of pristine SnS as a function of temperature, with two doping levels 𝜎 𝑆 𝜅𝑒

of  = 1016 and 1019 cm-3 and a constant  = 4.06 × 10-15 s,4, 9, 10 obtained from PBEsol electronic-𝑛 𝜏𝑒

structure and transport calculations with up to 5  denser -point sampling compared to the “base” × 𝑘

mesh used for the geometry optimisations.
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Figure S11. Calculated electronic density of states  (DoS) of pristine SnS obtained with the 𝑔(𝐸)

PBEsol functional (2  -point sampling), with the Fermi-Dirac distribution in Equation (S3.6) at  × 𝑘 𝑇

= 300 and 800 K overlaid for comparison.
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Figure S12. Comparison of the predicted carrier concentration  (a), mobility  (b), electrical 𝑛 𝜇

conductivity  (c), Seebeck coefficient  (d), power factor  (PF, e) and electrical thermal 𝜎 𝑆 𝑆2𝜎

conductivity  (f) obtained from electronic-structure and transport calculations with PBEsol and up 𝜅𝑒

to 3  -point sampling, and Sn pseudopotentials with the semi-core Sn 4d electrons in the core (“Sn”) × 𝑘

and valence regions (“Sn_d”).
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Figure S13. Comparison of the predicted carrier concentration  (a), mobility  (b), electrical 𝑛 𝜇

conductivity  (c), Seebeck coefficient  (d), power factor  (PF, e) and electrical thermal 𝜎 𝑆 𝑆2𝜎

conductivity  (f) as a function of temperature obtained from electronic-structure and transport 𝜅𝑒

calculations with HSE06 and non-self-consistent (“NSC”) HSE06 and up to 3  -point sampling.× 𝑘
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Figure S14. Predicted electrical conductivity  (a), Seebeck coefficient  (b) and electronic thermal 𝜎 𝑆

conductivity  of pristine SnS as a function of doping level  and temperature, obtained from 𝜅𝑒 𝑛

electronic-structure and transport calculations with HSE06 (2  -point sampling), compared to × 𝑘

experimental measurements.
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Figure S15. Comparison of the predicted concentration  (a), mobility  (b), electrical conductivity 𝑛 𝜇

 (c), Seebeck coefficient  (d), power factor  (PF, e) and electrical thermal conductivity  (f) as 𝜎 𝑆 𝑆2𝜎 𝜅𝑒

a function of temperature to experimental measurements. Three sets of predictions are shown, based 

on electronic-structure and transport calculations with PBEsol (3  -point sampling), HSE06 (2  × 𝑘 ×

-point sampling) and non-self-consistent (“NSC”) HSE06 (3  -point sampling), in each case with 𝑘 × 𝑘

fitted  and electron relaxation times  as described above.𝑛 𝜏𝑒
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S4. Supplementary Methods: Calculation of Lattice Thermal Conductivity

Computing the lattice-thermal conductivity  requires calculation of the second-order force 𝜅𝐿

constants (FC2), which are used to calculate the phonon heat capacities  and group velocities  in 𝐶𝜆 𝜈𝜆

Equation (3) in the text, and the third-order force constants (FC3), which are combined with the 

harmonic phonon frequencies and eigenvectors to determine the phonon lifetimes .12 Both the FC2 𝜏𝜆

and FC3 are determined using finite differences by calculating the change in forces in response to 

small displacements of the symmetry-independent atoms in an appropriate supercell. Once the FC2 

and FC3 have been calculated, the modal properties must then be determined on an appropriate grid 

of reciprocal-space phonon wavevectors ( -points) to sample the phonon Brillouin zone.𝑞

The  of pristine SnS was calculated using 4×4×2 and 3×3×1 supercell expansions (256/72 𝜅𝐿

atoms) to determine the FC2 and FC3 and a 16×16×8 q-point mesh, all of which are in line with our 

previous studies.13, 14 

Given the different supercells used to create the three Ag-doped models, it was not possible to 

select a common supercell expansion for computing the FCs. The FC2 of the smaller 2.78% model 

were computed in a 1×1×2 supercell expansion, equivalent to a 3×3×2 supercell of pristine SnS (144 

atoms), while the FC2 of the larger models were computed in supercells equivalent to a 4×4×2 

supercell of SnS (256 atoms). To confirm the harmonic properties from both supercells were 

converged, we compared phonon density of states (DoS) and dispersion curves of pristine SnS 

computed with FC2 determined using 3×3×2 and 4×4×2 supercells and found that both yielded 

practically identical results (Figure 16).

Due to the symmetry lowering induced by the Ag for Sn substitution, the number of 

displacements required to compute the FC3 in a single cell of the 2.78% model, which is based on the 

same 3×3×1 expansion used to calculate the FC3 of pristine SnS, was impractical. We therefore applied 
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a 5 Å cutoff in order to limit the number of calculations. The calculated  of pristine SnS with the 𝜅𝐿

same cutoff imposed to the FC3 gave very similar results to those obtained with the full set of FCs 

(Figure S17), suggesting this approximation is reasonable. We also calculated the  using the smaller 𝜅𝐿

3×3×2 FC2 SC, with and without the range cutoff, and again found similar results, which further 

supports the similar phonon spectra in Figure S16.

For similar reasons, it was not possible to calculate the FC3 of the larger 0.78% and 1.56% 

models, even with a range cutoff. For these systems, we instead adapted the approximate model 

developed in our previous work on alloys.14 In the SM-RTA model, the FC3 are required to calculate 

the three-phonon interaction strengths  to obtain the phonon lifetimes. If these can be replaced 
Φ

𝜆𝜆'𝜆''

by a suitable constant value , the  can be estimated from a harmonic phonon calculation. Suitable 𝑃̃ 𝜅𝐿

weighted average values of the  were determined as described in our previous work from a linear 
Φ

𝜆𝜆'𝜆''

fit of the  as a function of  to determine the  that reproduce the calculated  of the pristine 𝜅𝐿 𝑃̃ ‒ 1 𝑃̃ 𝜅𝐿

SnS and 2.78% models at a reference temperature of 600 K (Figure S18 and S19).

Noting that the  need to be scaled by  to compare between systems, where  is the 𝑃̃ (3𝑛𝑎)2 𝑛𝑎

number of atoms in the primitive unit cell and there are therefore  bands at each -point,15 the 3𝑛𝑎 𝑞

scaled  = 2.95 10-8 and 3.91 10-8 obtained for the SnS and 2.78% models at 600 K differ by 𝑃̃ × ×

~30%. The value for SnS at 300 K is 14% larger than value of 2.52 10-8 eV2 obtained in our previous ×

work, which included a dispersion correction.14 As a test, we calculated the  of the 2.78% model 𝜅𝐿

using the (rescaled)  for pristine SnS, and obtained a reasonable estimate of the  (Figure S20). We 𝑃̃ 𝜅𝐿

therefore used the  for the SnS and 2.78% models to obtain two estimates of the  of each of the 𝑃̃ 𝜅𝐿

0.78% and 1.56% models, and interpolated between them based on the Ag doping concentration 

(Figure S21 and S22).
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The predicted  for all three doped models were found to be very low in comparison to the 𝜅𝐿

experimental measurements. Solving the phonon Boltzmann transport equation (BTE; here within the 

SM-RTA) accounts for the contribution to the  from “particle-like” transport. However, in materials 𝜅𝐿

where dense band structures and/or broad phonon linewidths cause bands to overlap, there is an 

additional contribution to the  from “wave like” tunnelling of energy between modes. Both the 𝜅𝐿

particle-like and wave-like contributions  can be computed by solving the Wigner 𝜅𝐿 = 𝜅𝑃 + 𝜅𝑊

transport equation (WTE).16 As shown in Figures S23-26, we find that the  terms for the doped 𝜅𝑊

models are comparable to the  between ~100-200 K and significantly larger than the  at high 𝜅𝑃 𝜅𝑃

temperature, and also that the  also makes a smaller but non-negligible contribution to the  of 𝜅𝑊 𝜅𝐿

pristine SnS at high . Furthermore, while the  of the three doped models is similar, the progressive 𝑇 𝜅𝑃

“unfolding” of the band structure as the supercell size is increased to model lower doping 

concentrations results in a “denser” band structure, smaller intraband spacing, and larger , 𝜅𝑊

recovering the chemically-intuitive result that the  increases, and converges towards that or pristine 𝜅𝐿

SnS, as the doping concentration is reduced. We therefore conclude that to model the  of doped 𝜅𝐿

supercell models it is likely insufficient to solve the BTE and consider only the particle-like 

conductivity, and solving the WTE is necessary in order to account for the wave-like contribution to 

the .𝜅𝐿
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Figure S16. Total and atom-projected (partial) phonon density of states (DoS; a/c) and phonon 

dispersion curves (b/d) of SnS computed using second-order force constants obtained in (a/b) 3×3×2 

and (c/d) 4×4×2 supercell expansions. 
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Figure S17. Comparison of the averaged lattice thermal conductivity  of 𝜅𝑎𝑣𝑒 = (𝜅𝑥𝑥 + 𝜅𝑦𝑦 + 𝜅𝑧𝑧) 3

SnS computed using 3 3 2 and 4 4 2 supercell expansions to determine the second-order force × × × ×

constants (FC2) and a 3 3 1 expansion to determine the third-order force constants (FC3) and with × ×

and without a 5 Å cutoff range.
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Figure S18. Determination of the averaged three-phonon interaction strength  of pristine SnS. (a) 𝑃̃

Averaged lattice thermal conductivity  as a function of  at  = 300, 600 𝜅𝑎𝑣𝑒 = (𝜅𝑥𝑥 + 𝜅𝑦𝑦 + 𝜅𝑧𝑧) 3 𝑃̃ ‒ 1 𝑇

and 900 K showing the value of  that reproduces the calculated values. (b) Fitted  as a function 𝑃̃ ‒ 1 𝑃̃

of temperature. (c) Calculated  as a function of temperature obtained with the calculated (per-𝜅𝑎𝑣𝑒

mode) interaction strengths and with interaction strengths set to the fitted  at300, 600 and 900 K.𝑃̃
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Figure S19. Determination of the averaged three-phonon interaction strength  of 2.78% Ag-doped 𝑃̃

SnS. (a) Averaged lattice thermal conductivity  as a function of  at  𝜅𝑎𝑣𝑒 = (𝜅𝑥𝑥 + 𝜅𝑦𝑦 + 𝜅𝑧𝑧) 3 𝑃̃ ‒ 1 𝑇

= 300, 600 and 900 K showing the value of  that reproduces the calculated values. (b) Fitted  as 𝑃̃ ‒ 1 𝑃̃

a function of temperature. (c) Calculated  as a function of temperature obtained with the calculated 𝜅𝑎𝑣𝑒

(per-mode) interaction strengths and with interaction strengths set to the fitted  at300, 600 and 900 𝑃̃

K.
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Figure S20. Comparison of the averaged lattice thermal conductivity  of 𝜅𝑎𝑣𝑒 = (𝜅𝑥𝑥 + 𝜅𝑦𝑦 + 𝜅𝑧𝑧) 3

2.78% Ag-doped SnS computed with the calculated (per-mode) three-phonon interaction strengths, 

with a 5 Å cutoff applied to the third-order force constants, and with the rescaled constant interaction 

strength  determined for pristine SnS.𝑃̃

Figure S21. Comparison of the averaged lattice thermal conductivity  of 𝜅𝑎𝑣𝑒 = (𝜅𝑥𝑥 + 𝜅𝑦𝑦 + 𝜅𝑧𝑧) 3

0.78% Ag-doped SnS computed with the rescaled constant interaction strengths  determined for 𝑃̃

pristine and 2.78% Ag-doped SnS together with  determined by interpolating between the two 𝜅𝑎𝑣𝑒

curves based on the doping concentration.
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Figure S22. Comparison of the averaged lattice thermal conductivity  of 𝜅𝑎𝑣𝑒 = (𝜅𝑥𝑥 + 𝜅𝑦𝑦 + 𝜅𝑧𝑧) 3

1.56% Ag-doped SnS computed with the rescaled constant interaction strengths  determined for 𝑃̃

pristine and 2.78% Ag-doped SnS together with  determined by interpolating between the two 𝜅𝑎𝑣𝑒

curves based on the doping concentration.
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Figure S23. Averaged lattice thermal conductivity  of pristine SnS 𝜅𝑎𝑣𝑒 = (𝜅𝑥𝑥 + 𝜅𝑦𝑦 + 𝜅𝑧𝑧) 3

computed by solving the Wigner transport equation (WTE). The total thermal conductivity 

 (orange) is shown together with the particle-like and wave-like contributions  (blue) 𝜅𝐿 = 𝜅𝑃 + 𝜅𝑊 𝜅𝑃

and  (red). This calculation is performed with the second-order force constants determined in a 𝜅𝑊

4×4×2 supercell expansion of the  SnS unit cell.𝑃𝑛𝑚𝑎
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Figure S24. Averaged lattice thermal conductivity  of 2.78% Ag-doped 𝜅𝑎𝑣𝑒 = (𝜅𝑥𝑥 + 𝜅𝑦𝑦 + 𝜅𝑧𝑧) 3

SnS computed by solving the Wigner transport equation (WTE). The total thermal conductivity 

 (orange) is shown together with the particle-like and wave-like contributions  (blue) 𝜅𝐿 = 𝜅𝑃 + 𝜅𝑊 𝜅𝑃

and  (red). This calculation is performed with the third-order force constants determined with a 5 Å 𝜅𝑊

cutoff.
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Figure S25. Averaged lattice thermal conductivity  of 1.56% Ag-doped 𝜅𝑎𝑣𝑒 = (𝜅𝑥𝑥 + 𝜅𝑦𝑦 + 𝜅𝑧𝑧) 3

SnS computed by solving the Wigner transport equation (WTE). The total thermal conductivity 

 (orange) is shown together with the particle-like and wave-like contributions  (blue) 𝜅𝐿 = 𝜅𝑃 + 𝜅𝑊 𝜅𝑃

and  (red). This calculation is performed with the rescaled constant interaction strengths  𝜅𝑊 𝑃̃

interpolated between the pristine SnS and 2.78% Ag-doped SnS models.
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Figure S26. Averaged lattice thermal conductivity  of 0.78% Ag-doped 𝜅𝑎𝑣𝑒 = (𝜅𝑥𝑥 + 𝜅𝑦𝑦 + 𝜅𝑧𝑧) 3

SnS computed by solving the Wigner transport equation (WTE). The total thermal conductivity 

 (orange) is shown together with the particle-like and wave-like contributions  (blue) 𝜅𝐿 = 𝜅𝑃 + 𝜅𝑊 𝜅𝑃

and  (red). This calculation is performed with the rescaled constant interaction strengths  𝜅𝑊 𝑃̃

interpolated between the pristine SnS and 2.78% Ag-doped SnS models.
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S5. Supplementary Methods: Calculation of Lotgering Factors

The degree of preferred orientation was determined from the XRD data using the Lotgering 

factor, LF:17

where  and  are calculated using the peak intensities from the measured and 
𝐿𝐹 =

𝑝 ‒ 𝑝0

1 ‒ 𝑝0
#(𝑆5.1)

𝑝 𝑝0

reference patterns respectively. For example,  and  of  plane can be calculated as follows:𝑝 𝑝0 (ℎ𝑘4)

𝑝 =

∑
ℎ𝑘

𝐼 (ℎ𝑘4)

∑
ℎ𝑘𝑙

𝐼 (ℎ𝑘𝑙)
#(𝑆5.2)

𝑝0 =

∑
ℎ𝑘

𝐼0 (ℎ𝑘4)

∑
ℎ𝑘𝑙

𝐼0 (ℎ𝑘𝑙)
#(𝑆5.3)

The LF ranges from 0 to 1, indicating random and perfect orientation respectively. The calculated LFs 

for the  and  planes parallel and perpendicular to the pressing direction are shown in Table (11𝑙) (ℎ𝑘4)

S4.

Table S4. Lotgering factors (LFs) measured for the  and  planes parallel (||) and (11𝑙) (ℎ𝑘4)

perpendicular (⊥) to the pressing direction.

|| (11𝑙) ⊥ (ℎ𝑘4)

SnS 0.124 0.282

0.78% 0.085 0.290

1.56% 0.096 0.276

2.78% 0.075 0.526
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