Theoretical investigation of width effect in electronic and transport properties of carbon nanoribbons with 5-8-5 carbon rings: a first principle study

Elder Augusto Viana Mota,^{*a} Carlos Alberto Brito da Silva Jr^b and Jordan Del Nero^c

^a Pós-Graduação em Física, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil.

^b Faculdade de Ciências Exatas e Tecnologia, Universidade Federal do Pará, 68440-000, Abaetetuba, PA, Brasil.

^c Faculdade de Física, Universidade Federal do Pará, Ananindeua, PA, 67113-901, Brazil.

^d Faculdade de Física, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil.

*Corresponding Author: E-Mail: elder.mota@icen.ufpa.br

Supporting Information (SI)

Fig. S1. Comparative of I-V curve for all molecular devices: (a) (9,w)zzP1, (b) (9,w)zzO, (c) (9,w)zzP2, (d) (5,w)acP, and (e) (5,w)acPO. We clearly see that the I values of zz nanoribbons are higher than ac cases.

Fig. S2. Comparative of (dI/dV)-V curve for all molecular devices: (a) (9,w)zzP1, (b) (9,w)zzO, (c) (9,w)zzP2, (d) (5,w)acP, and (e) (5,w)acPO. We clearly see that the conductance of zz nanoribbons are higher than ac cases.