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Computational details
The structure search approach is based on a global minimization of free energy 

surfaces merging ab initio total-energy calculations as implemented in the CALYPSO 

code1–3. Searches are carried out to identify the most stable structures with 

stoichiometries of KNx (x = 1-4) using simulation cell sizes of 1-4 formula units (f.u.) 

at 0 K and the considered pressures of 1 atm. In the first step, random symmetric 

structures are constructed in which atomic coordinates are generated by the 

crystallographic symmetry operations. Local optimizations using the VASP code4,5 

are done with the conjugate gradient method, and are deemed to be converged when 

the enthalpy changes become smaller than 1 × 10-5 eV per cell. The cut-off energy for 

the expansion of wavefunctions into plane waves is set to 400 eV in all structure 

searches, and a Monkhorst–Pack k-mesh with a maximum spacing of 2 × 0.06 Å-1. 

After the first generation of structures is optimized 60% of the lowest lying structures 

are selected to construct the next generation by PSO (Particle Swarm Optimization). 

40% of the structures in the new generation are randomly generated. A structure 

fingerprinting technique using a bond characterization matrix is applied to the 

generated structures, so that identical structures are strictly forbidden. This procedure 

significantly enhances the diversity of the structures, which is crucial for maintaining 

the efficiency of the global search. In most cases, structure search simulations for 

each calculation are stopped after generating 1000 ~ 1200 structures (e.g., about 20 ~ 

30 generations).

  To further analyze the structures with higher accuracy, we select a number of 

structures with lower total enthalpies and perform structural optimization using 

density functional theory (DFT) within the generalized gradient approximation (GGA) 

as implemented in the VASP code. The electron-ion interaction is described by using 

the all-electron projector augmented-wave (PAW) method6 with 3s23p64s1 and 2s22p3 

valence electrons for K and N atoms, respectively. The cut-off energy for the 

expansion of wavefunctions into plane waves is set to 600 eV in all calculations, and a 

Monkhorst–Pack k-mesh7 with a maximum spacing of 2 × 0.03 Å-1. This usually 
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gives enthalpies well converged to within ~1 meV/atom. The calculated cohesive 

energies of the KNx (x=1-4) monolayers with the following expression:

Ecoh=(EK+xEN-EKNx)/(1+x),

Where EK, EN, and EKNx denote the energy of a single K atom, a single N atom, and 

the KNx (x=1-4) monolayer, respectively. To determine the dynamic stability of the 

predicted structures, phonon calculations are performed using the finite displacement 

approach8 as implemented in the Phonopy code9. 

  Based on the estimated elastic constants, obtained by the strain-energy method, we 

further explore the mechanical properties. The Young’s modules Y( and Poisson’s 

ratio (along any direction (is the angle relative to the positive x-direction) are 

defined as
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where c=cosand s=sin

Fermi surface nesting function ξ(q) is calculated through：

, ,n
( ) ( ) ( )kn F k qm F
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q        

The electron-phonon coupling calculations are carried out with the density 

functional perturbation (linear response) theory as implemented in the QUANTUM 

ESPRESSO package10,11. We employ ultrasoft pseudopotentials with 3s23p64s1, and 

2s22p4 as valence electrons for K, and N atoms, respectively. The kinetic energy 

cutoff for wave-function expansion is chosen as 70 Ry. To reliably calculate electron-

phonon coupling in metallic systems, we need to sample dense k-meshes for the 

electronic Brillouin zone integration and enough q-points for evaluating the average 
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contributions from the phonon modes: we have used a 12 × 12 × 1 k-mesh and 6 × 6 × 

1 q-mesh for calculating the superconducting Tc of KN2 monolayer:

                

log
c *

1.04(1 )exp
1.2 (1 0.62 )

T
 

  
 

    

Here, kB is the Boltzmann constant and μ* is the Coulomb pseudopotential (μ* = 0.1). 

The magnitude of the EPC λq,v can be calculated by:

      

,
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where q,v is the phonon linewidth, N(EF) is the electronic density of states at the 

Fermi level, and the  is the phonon frequency. The phonon linewidths q,v can be 𝜔𝑞,𝑣   

estimated by 
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where  is the electron-phonon matrix element between two electronic states ,
v
kn k qmg 

with momenta k and k + q at the Fermi level. 
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The Eliashberg spectral function for the electron-phonon interaction and the 

frequency-dependent EPC can be calculated by:     
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Anisotropic superconducting properties were investigated by solving the fully 

anisotropic Migdal-Eliashberg equations as implemented in the electron-phonon 

Wannier (EPW) code12–14. The precedent computations of the electronic wave 

functions required for the Wannier interpolations are performed in a uniform 
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unshifted BZ k-mesh of 12 × 12 × 1. An interpolated k-point grid of 120 × 120 × 1 

and q-point grid of 120 × 120 ×1 are used to solve the anisotropic Migdal-Eliashberg 

equations. The fermion Matsubara frequencies cutoff is set to 0.6 eV, a reasonable 

setting is 3~4 times higher than the largest phonon frequency. The Morel-Anderson 

pseudopotential μ𝑐
∗ is set to 0.13. 
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Supplemental figures

Figure S1. Phonon dispersion curves of (a) KN2 and (b) KN4 monolayers with unit-

cell. The calculated phonon spectra indicate that the predicted KN2 and KN4 

monolayers are all dynamically stable in view of absence of imaginary frequency 

modes in the first Brillouin zone.
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Figure S2. Direction dependences of Young’s modulus and Poisson’s ratio for (a, b) 

KN2 and (c, d) KN4 monolayers.
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Figure S3. Phonon dispersion curves of predicted (a) KN and (b) KN3 monolayers.

Figure S4. The projected density of states (PDOS) of the KN2 monolayer doped with 

1 hole/cell.
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Figure S5. Electronic band structures of the KN2 monolayer at the PBE (red) and 

HSE06 (black) levels.
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Electronic properties for the KN4 monolayer
To accurately describe the electronic properties of the KN4 monolayer, we employ 

the PBE functional to calculate band structure and partial density of states (PDOS) 

(Figure S6). KN4 is a metal with one band crossing the Fermi level. N 2p is more 

dominant component of the electronic states located near Fermi level.

Figure S6. (a) Electronic band structure and (b) PDOS for KN4 monolayer at the PBE 

level.
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Supplemental tables
Table S1. The calculated values of elastic constants Cij (N*m-1) for the KN2 and KN4 

monolayers at ambient pressure.

         KN2               KN4

C11 15.521 C11 26.610
C12 8.354 C12 7.821

C22 14.036 C22 9.608

C16 3.657 C16 4.343

C26 1.591 C26 4.017

C66 9.684 C66 7.560

According to the derived elastic constants (Table S1), the KN2 and KN4 monolayers 

satisfy the mechanical stability criteria C11 > 0, C11*C22-C12
2 > 0 and C66 > 0.

Table S2. Bader atomic charge for KN2 and KN4.

Phases Pressur

e 
Atoms Charge (e)

KN2 1atm K 0.82

N1 -0.39

N2 -0.42

KN4 1atm K 0.85

N1 -0.20

                     N2 -0.20

      N3 -0.20

N4 -0.20
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Table S3. Structural information for the stable K-N monolayers at the ambient 

pressure

Wyckoff Positions

(fractional)

Phases Lattice

Parameters

(Å, ) ° Atoms x y z

Cmmm-KN2 a = 4.4278 K -0.50000 0.50000 0.50000

primitive cell b = 4.4278 N -0.91204 0.91204 0.50000

c = 20.000

α = 90.0000

β = 90.0000

γ = 98.4442

P-1-KN4 a = 4.13700 K 1.00000 0.00000 0.50000

b = 4.20420 N 0.60415 0.38357 0.58509

c = 4.20420 N 0.58443 0.42977 0.41520

α = 86.1606

β = 92.2621

γ = 94.1162
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