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1.1. Materials

Tri-n-propylamine ((C3H7)3N), 99% aq. soln.) was purchased from Merck. Manganese 

(II) bromide tetrahydrate (MnBr2.4H2O, 98%) was obtained from Acros Organics 

(Spain). Hydrobromic acid (HBr, 48% w/w aq. soln.) and Anhydrous methanol (99.7%) 

were obtained from Alfa Aesar (Spain).

All chemicals were of reagent grade and were used without further purification. All 

manipulations were conducted in the air. 

1.2 Synthesis of tri-n-propylammonium bromide salt (TPA-Br)

The tri-n-propylammonium bromide salt was prepared by a direct reaction between tri-n-

propylammonium (TPA) and Hydrobromic acid (HBr) using ethyl acetate as solvent 

under continuous stirring at (0-2 °C) in an ice bath to remove the reaction heat. The 

colorless precipitate was washed several times using ethyl acetate to obtain a clean 

product. The solvent was evaporated under reduced pressure using a rotary evaporator at 

50 °C.

1.3 Synthesis of (TPA)2MnBr4 single crystals

The synthesis of the (TPA)2MnBr4 compound was carried out using a similar procedure 

reported elsewhere.1 After dissolving 0.44 g (2 mmol) of tri-n-propylammonium bromide 

(TPA-Br) and 0.286 g (1 mmol) of manganese (II) bromide tetrahydrate (MnBr2.4H2O) 

in water, 3 mL of 80 % HBr were added to the solution, and the mixture was stirred for 2 

h until the solid was completely dissolved. The corresponding chemical reaction is 

presented in (Eq. 1):

2[(𝐶3𝐻7)3𝑁 + , 𝐵𝑟 ‒ ] + 𝑀𝑛𝐵𝑟2.4𝐻2𝑂→ [(𝐶3𝐻7)3𝑁]2𝑀𝑛𝐵𝑟4  (1)

 The solution was then evaporated to almost dryness at 45 °C. After 3 days, light pink 

needle single crystals of (TPA)2MnBr4 were obtained.

1.4 Synthesis of (TPA)2MnBr4 powder

0.224 g (1 mmol) of tri-n-propylammonium bromide and 0.286 g (1 mmol) of manganese 

(II) bromide tetrahydrate were mixed in 4mL of anhydrous methanol solvent for 2h at 

room temperature. Later, the solution was kept at 40 °C for several days until the solvent 

was completely evaporated and a light-yellow powder of (TPA)2MnBr4 was obtained. 
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The fresh products showed a bright green fluorescence under UV light irradiation. The 

prepared powder was kept in a desiccator to prevent its exposition to moisture.

1.5 Fabrication of green-light-emitting diodes LEDs

The down-converter LED devices were fabricated by combining a 465 nm UV LED chip 

with the as-synthesized green-phosphor (TPA)2MnBr4. The color of the LEDs was tuned 

by controlling the amount of the green-phosphor (TPA)2MnBr4, which is varied from 4-

10mg. The LEDs were operated at 2.7V and a drive current of 18mA.

1.6 Characterizations and measurements 

For the single crystal X-ray measurements, a suitable crystal of 0.15×0.12×0.08 mm3 was 

selected and placed on a MiTeGen micromount on an XtaLAB Synergy R, HyPix-Arc 

100 diffractometer. The crystal was kept at a steady T = 150.00(10) K during data 

collection. The structure was solved with the SHELXT 2018/22 structure solution 

program using the Intrinsic Phasing solution method and by using Olex23 as the graphical 

interface. The model was refined with version 2018/3 of SHELXT 2018/344 using Least 

Squares minimization. All non-hydrogen atoms were refined anisotropically. Hydrogen 

atom positions were calculated geometrically and refined using the riding model. 

Important structural refinement parameters are summarized in Tables S1-S3 and the 

crystallographic data are also supplied. The DIAMOND program was used for the crystal 

structure plotting.4 The crystallographic data are deposited in the Cambridge 

Crystallographic Data Centre (CCDC 2301462). The data can be downloaded from the 

site (www.ccdc.cam.ac.uk/data_request/cif).

The Hirshfeld surfaces and the 2D finger plots of (TPA)2MnBr4 were generated by the 

program Crystal Explorer 3.15 based on the CIF files. To identify the regions of particular 

importance to the intermolecular interactions (highlighted by red, white and blue areas), 

the normalized contact distance (dnorm) was generated using the following equation (2):

𝑑𝑛𝑜𝑟𝑚 =  
(𝑑𝑖 ‒ 𝑟𝑣𝑑𝑤

𝑖 )

𝑟𝑣𝑑𝑤
𝑖

+
(𝑑𝑒 ‒ 𝑟𝑣𝑑𝑤

𝑒 )

𝑟𝑣𝑑𝑤
𝑒

 (2)

based on de (distance from the surface to the nearest atom exterior to the surface), di 

(distance from the surface to the nearest atom interior to the surface) and rvdw the van der 

Waals radii of the atom.

http://www.ccdc.cam.ac.uk/data_request/cif
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The powder X-ray diffraction (PXRD) of the powder particles of the synthesized 

perovskites obtained from the grounded single crystals previously used for the crystal 

structure determination was carried out using a PANalytical diffractometer (X’Pert Pro 

model) and an X Bruker D8 Advance. The conditions used were 45 kV, 40 mA, CuKα 

radiation, and a system of slits (soller-mask-divergence-antiscatter) of 0.04 rad-10 mm-

1/8◦ -1/4◦ with an X’celerator detector.

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis 

of synthesized compound (DSC) were undertaken on a SDT Q600 calorimeter under the 

dynamic Nitrogen (100 mL/min flow rate) in temperature range of 25–900 °C at the scan 

rate of 10 °C/min. The sample weight was 10.36 mg. Platinum crucibles were used as 

containers. 

X-band (~9.36 GHz) EPR measurements were carried out on a Bruker ELEXSYS 500 

spectrometer equipped with a super-high-Q resonator ER-4123-SHQ and standard 

Oxford Instruments low-temperature devices. Q-band (~33.9 GHz) EPR spectra were 

recorded on a Bruker EMX system equipped with an ER-510-QT resonator. The magnetic 

field was calibrated by a NMR probe and the frequency inside the cavity was determined 

with a Hewlett-Packard 5352B microwave frequency counter. Data were collected and 

processed using the Bruker Xepr suite. 

The UV/Vis diffuse reflectance (DR) spectra were recorded on a JASCO V-670 

spectrophotometer equipped with a 60 mm integrating sphere unit (JASCOISN-723). The 

longitudinal axes of the spectrum were converted using the Kubelka–Munk function from 

reflectance (%R) to K-M unit F(R) = ((1 − R)2(2R)-1) where R is the diffuse reflectance 

intensity from the sample. The emission and excitation spectra were measured by a 

FluoroMax-4 (Jobin-Yvon) spectrofluorometer. Photoluminescence quantum yield 

(PLQY) measurements were performed using the quanta-ϕ (HORIBA) integrating sphere 

accessory, attached to the “NanoLog” Horiba Jobin Yvon spectrofluorometer.

Time-resolved photoluminescence (TR-PL) measurements were performed by exciting 

the samples with 40 ps-pulsed (<1 mW, 40 MHz repetition rate) diode lasers (PicoQuant, 

Germany) centered at 371 and 433 nm. The system was equipped with a laser driver 

(PDL820B, PicoQuant, Germany) for burst operation that allows the measurement of 

luminescence decays at time windows up to several seconds. The emission decays were 

collected and analyzed through a TCSPC and multi-channel scaling board (TimeHarp260 
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(nano), PicoQuant, Berlin, Germany). The fluorescence signal was gated at a magic angle 

(54.7°) and monitored at 90° with respect to the excitation beam at discrete emission 

wavelengths. The experimental decays were accurately analyzed using a single 

exponential function. 

Fluorescence Lifetime Imaging. Fluorescence lifetime images were recorded with a 

MicroTime 200 microscope (PicoQuant) equipped with a TCSPC card and two TAU-

SPAD avalanche photodiode detectors. A 390-nm pulsed diode laser (PicoQuant) was 

used as the excitation source at a 10 MHz repetition rate and a power of ∼0.7 μW. FLIM 

images were processed using SymPhoTime 64 software (PicoQuant). The anisotropy 

distribution histograms were obtained from the FLIM images collected at parallel an 

perpendicular orientation of the emission with respect to the excitation. The emission 

spectra were collected through a Shamrock ST-303i (Andor Technology) imaging 

spectrograph and detected by an Andor Newton EMCCD camera (Andor Technology).

Figure S1.  (A) Optical photographs of as-prepared (TPA)2MnBr4 crystals in the daylight 

(left) and upon 365 nm UV excitation (right). (B) Representation of the temperature effect 

on the emission of (TPA)2MnBr4 upon 365 nm excitation. Left: room temperature before 

heating; Centre: After heating for 30 min at 75OC, above the melting point, 72OC; Right: 

After cooling down the melted sample to room temperature. 

A)

B)
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Figure S2. (A) Crystal structure of (TPA)2MnBr4. (B)The Mn-Mn distances in 

(TPA)2MnBr4 are 9.5444 Å and 10.0066 Å labeled with orange lines.

A)
A) B)
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Surface d’Hirchfeld analysis

Figure S3. Hirshfeld surface analysis mapped with dnorm and the associated 2D-fingerprint plots 

of (TPA)2MnBr4 showing the major intermolecular interactions: (A) All, (B) H…H, (C) 

H…Br/Br…H and (D) Mn…H contributions.
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Table S1. Crystallographic Parameters for single crystal of (TPA)2MnBr4 from Single-

crystal X-ray diffraction experiment.

Crystal data
Br4Mn·2(C9H22N) Z = 2
Mr = 663.13 F(000) = 662
Triclinic, P-1 Dx = 1.585 Mg m-3

a = 9.5444 (2) Å, b = 10.1056 (2) Å and c 
= 15.1835 (3) Å

Cu Kα radiation, λ = 1.54184 Å

α = 82.880 (2)°, β = 73.734 (2)° and γ = 
83.119 (2)°

Cell parameters from 30197 reflections

V = 1389.44 (5) Å3 θ= 3.0–73.1°
T = 150 K  = 10.62 mm-1𝜇
0.15 × 0.12 × 0.08 mm Irregular, clear light yellow

Data collection

XtaLAB Synergy R, HyPix-Arc 100 
diffractometer

4923 independent reflections

Radiation source: Rotating-anode X-ray 
tube, PhotonJet R (Cu) X-ray Source

4731 reflections with I > 2σ(I)

Mirror monochromator Rint = 0.025
Detector resolution: 10.0000 pixels mm-1 θmax = 66.6°, θmin = 3.1°

 scans𝜔 h = -11→11
Tmin = 0.206, Tmax = 0.533 k = -12→12
48346 measured reflections l = -18→18

Refinement
 Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from 

neighbouring sites
R[F2 > 2σ(F2)] = 0.020 H-atom parameters constrained
wR(F2) = 0.045  w = 1/[σ2(Fo

2) + (0.0182P)2 + 1.2243P]  
where P = (Fo

2 + 2Fc
2)/3

S = 0.99 ( /σ)max = 0.001∆
4923 reflections, 232 parameters and 0 
restraints.

ρmax = 0.53 e Å-3, min = -0.40 e Å-3∆ ∆𝜌
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Table S2. Geometric parameters (Å, º) for (TPA)2MnBr4 single crystal.

Br1—Mn1 2.5076 (4) C7—N1 1.511 (3)
Br2—Mn1 2.5408 (4) C8—C9 1.502 (4)
Br3—Mn1 2.5083 (4) C10—C11 1.499 (4)
Br4—Mn1 2.4896 (4) C10—N2 1.508 (3)
C1—C2 1.516 (3) C11—C12 1.519 (4)
C1—N1 1.507 (3) C13—C14 1.515 (3)
C2—C3 1.520 (3) C13—N2 1.513 (3)
C4—C5 1.519 (3) C14—C15 1.518 (4)
C4—N1 1.507 (3) C16—C17 1.499 (4)
C5—C6 1.524 (3) C16—N2 1.501 (3)
C7—C8 1.512 (3) C17—C18 1.516 (4)
Br1—Mn1—Br2 107.948 (15) C1—N1—C4 113.91 (16)
Br1—Mn1—Br3 111.213 (14) C1—N1—C7 109.28 (16)
Br3—Mn1—Br2 106.654 (14) C4—N1—C7 113.61 (17)
Br4—Mn1—Br1 109.779 (15) C11—C10—N2 113.31 (19)
Br4—Mn1—Br2 111.917 (15) C10—C11—C12 109.5 (2)
Br4—Mn1—Br3 109.304 (15) N2—C13—C14 114.37 (19)
N1—C1—C2 114.91 (18) C13—C14—C15 110.2 (2)
C1—C2—C3 110.49 (19) C17—C16—N2 113.5 (2)
N1—C4—C5 113.04 (17) C16—C17—C18 109.9 (2)
C4—C5—C6 110.53 (19) C10—N2—C13 114.69 (18)
N1—C7—C8 115.6 (2) C16—N2—C10 110.63 (18)
C9—C8—C7 115.3 (2) C16—N2—C13 112.90 (18)
C2—C1—N1—C4 49.5 (2) C11—C10—N2—C13 -57.2 (3)
C2—C1—N1—C7 177.81 (18) C11—C10—N2—C16 173.7 (2)
C5—C4—N1—C1 61.3 (2) C14—C13—N2—C10 -51.8 (3)
C5—C4—N1—C7 -64.7 (2) C14—C13—N2—C16 76.2 (3)
C8—C7—N1—C1 -179.80 (19) C17—C16—N2—C10 -156.3 (2)
C8—C7—N1—C4 -51.4 (3) C17—C16—N2—C13 73.7 (2)
N1—C1—C2—C3 177.42 (18) N2—C10—C11—C12 -173.7 (2)
N1—C4—C5—C6 -170.27 (19) N2—C13—C14—C15 -176.9 (2)
N1—C7—C8—C9 -60.2 (3) N2—C16—C17—C18 166.5 (2)
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Table S3. Distances (Å) and angles (º) in the hydrogen-bond geometry of (TPA)2MnBr4 

single crystal.

D—H···A D—H H···A D···A D—H···A

C1—H1A···Br3i 0.99 2.96 3.904 (2) 160

C5—H5B···Br3i 0.99 3.06 3.980 (2) 155

C7—H7A···Br3 0.99 3.02 3.982 (2) 166

C7—H7B···Br4i 0.99 3.03 3.973 (2) 161

N1—H1···Br2 1.00 2.39 3.3462 (17) 160

C11—H11B···Br1 0.99 3.10 3.913 (3) 140

C13—H13B···Br1ii 0.99 2.91 3.870 (2) 163

C14—H14B···Br2iii 0.99 3.12 4.011 (3) 150

C16—H16A···Br3 0.99 2.96 3.724 (2) 135

C16—H16B···Br2iii 0.99 3.00 3.875 (2) 148

N2—H2···Br1 1.00 2.36 3.3538 (19) 171

Symmetry codes:  (i) -x+2, -y+1, -z;  (ii) -x+1, -y, -z+1;  (iii) x-1, y, z.
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DSC plot
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Figure S4. DSC curves during heating and cooling of (TPA)2MnBr4 measured between 

200 and 300 K.

EPR Spectra
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Figure S5. X-band (A) and Q-band (B) electron-spin paramagnetic resonance (EPR) of 

(TPA)2MnBr4 at room temperature.
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Emission spectra at different excitation wavelengths
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Figure S6. Excitation wavelength-dependent (inset) emission spectra of (TPA)2MnBr4 at 

room temperature.
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Table S4. Examples of reported single crystals of Mn-based tetrahedral bromide perovskites and 

their photophysical proprieties.

Examples of reported 
Mn(II) tetrahedral 

and Br hybrid 
perovskites

Mn-Mn 
distance (Å)

λEm(nm) PLQY 
(%)

Emission 
Lifetime 

(ms)

knr (103s-1) LED Ref.

(3AMP)MnBr4 6.52 514 9.5 0.025 36.2 No 6

Cs3MnBr5 6.79 520 49 0.290 1.75862 Yes 7

(EPY)2MnBr4 6.87 515 28.1 0.214 3.35981 Yes 8

(3MP) MnBr4 7.94 523 13 0.019 45.78947 No 6

(C13H26N)2MnBr4 8.02 515 64.6 0.370 0.95676 Yes 9

(PMMIM)2MnBr4 8.18 515 70.2 0.367 0.81199 Yes 8

(HQ)2MnBr4 8.42 545 38.7 0.335 1.82985 No 10

(IPTMA)2MnBr4 8.52 497 52.6 - - No 11

(C13H14N)2MnBr4 8.54 539 46.2 0.245 2.19592 Yes 9

[(CH2)4N(CH2)4]2MnBr4 8.58 525 13.1 - - No 12

(TMPEA)2MnBr4 8.64 520 70.8 0.096 3.04167 No 6

(MeQ)2MnBr4 8.79 528 44.6 0.242 2.28926 No 10

(DIPA)2MnBr4 8.85 525 62.2 1.4.10 ‒ 6 - No 13

(CH2CH3)3NH)2MnBr4 8.85 528 50 0.380 1.31579 No 14

(EtQ)2MnBr4 8.86 528 64.4 0.349 1.02006 No 10

C8H20N2MnBr4 8.88 520 19 3.9. 10 ‒ 6 - No 15

(BTMA)2MnBr4 8.97 519 51.1 0.236 2.07203 No 6

(HEP)2MnBr4 9.00 519 25.5 0.049 15.20408 No 6

(C9H14N)2MnBr4 9.03 521 58 0.335 1.25373 Yes 8

(FEtQ)2MnBr4 9.04 516 83.6 0.370 0.44324 No 10

(EMMIM)2MnBr4 9.09 511 79.5 0.343 0.59767 Yes 8

(BTEA)2MnBr4 9.39 515 46 0.334 1.61677 Yes 16

(C9NH20)2MnBr4 9.41 528 81.1 0.319 0.59248 No 17

(TPA)2MnBr4 9.54 520 62 0.390 0.97436 Yes This work

(BTEA)2MnBr4 9.62 521 97.8 0.346 0.06358 No 18

(BMPR)2MnBr4 9.65 527 50.6 0.270 1.82963 Yes 16

(C12H28N)2MnBr4 9.75 511 76 0.329 0.72948 Yes 8

(HTPP)2MnBr4 >10 521 98.6 0.307 0.0456 No 19

(C8H20N)2MnBr4 10.28 515 85.1 0.443 0.33634 Yes 20

(C24H20P)2MnBr4 10.45 515 99.8 0.372 0.00538 Yes 21
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Figure S7. Variation of the Mn-Based tetrahedral hybrid perovskites (A) 

photoluminescence quantum yield (PLQY) and (B, C and D) non-radiative rate constant 

(knr) with the value of the shortest Mn···Mn distance (in single crystal). The plotted data 

are from table S4. Plot (C) is without the data of perovskites 1-3 in plot (B). Plot (D) is 

for Mn···Mn distance starting from 8.5 Å.  The labeled data, 1, 2 and 3 in panel (B) are for 

aminomethylpiperidinium (3AMP), 3-methylpiperidinium (3MP) and heptamethylenimine 
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observation under two excitation wavelengths: (A) 371 nm and (B) 433 nm. The solid 

line is a monoexponetial fit of the experimental decay giving an emission lifetime of 0.390 

ms.

Single Crystal Emission Microscopy

Figure S9. FLIM images of different isolated single crystals of (TPA)2MnBr4.
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Figure S10. (A) FLIM image of an isolated (TPA)2MnBr4 crystal and (B) emission 
spectra collected at discrete points: (1) bulk, (2 and 3) edge.

A) B)



15

Figure S11. Anisotropy distribution histograms of three different isolated (TPA)2MnBr4 
crystals.
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