Supplementary Materials

NIR-Triggered Logic Gate in MXene-Modified Perovskite Resistive Random Access Memory

Rongbin Li,^{a‡} Yan Sun,^{a‡} Qianyu Zhao,^a Xin Hao,^a Haowei Liang,^a Shengang Xu,^{a,b} Yingliang Liu,^{*ab} Xiaoman Bi,^{*ab} Shaokui Cao,^{ab}

^aSchool of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China

^bHenan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou university, Zhengzhou 450001, People's Republic of China

Fig. S1 XRD patterns of Ti₃C₂T_x-TBAOH, Ti₃C₂T_x-TBABr, Ti₃C₂T_x-CTAB.

Fig. S2 Raman spectra of $Ti_3C_2T_x$, $Ti_3C_2T_x$ -TBAOH, $Ti_3C_2T_x$ -TBABr and $Ti_3C_2T_x$ -CTAB.

Fig. S3 (a) Dispersibility of Ti₃C₂T_x-TBAOH, Ti₃C₂T_x-TBABr, Ti₃C₂T_x-CTAB in DMF; (b) The UV-vis-NIR absorption spectra after standing for 24 h.

Fig. S4 High-resolved XPS spectra of Ti2p, C1s, O1s and F1s.

Fig. S5 Magnified SEM images of Ti₃C₂T_x -TBAOH-modified perovskite film (a,

0wt%; b, 0.05wt%; c, 0.1wt%).

Fig. S6 Cross-sectional SEM images of Ti₃C₂T_x -TBAOH-modified perovskite film.

Fig. S7 HRS/LRS resistance for 50 pristine devices without the $Ti_3C_2T_x$ -TBAOH

Fig. S8 HRS/LRS resistance for 50 Ti₃C₂T_x-TBAOH-modified devices (0.1 wt%).

Fig. S9 Histogram of SET/RESET voltage of pristine devices without the $Ti_3C_2T_x$

-TBAOH additive.

Fig. S10 Histogram of SET/RESET voltage of $Ti_3C_2T_x$ -TBAOH-modified devices

(0.1 wt%).

Fig. S11 Retention characteristics of pristine devices without the $Ti_3C_2T_x$ -TBAOH

additive.

Fig. S12 Retention characteristics of $Ti_3C_2T_x$ -TBAOH-modified devices (0.1 wt%).

Fig. S13 UV-vis-NIR spectra of Ti₃C₂T_x-TBA powders (a) and MAPbI₃@MXene

Fig. S14 I–V curves for pristine (a) and 0.1 wt% Ti₃C₂T_x-TBAOH-modified (b)

devices in dark and under light irradiation.

Fig. S15 I-V curves of 0.1 wt% $Ti_3C_2T_x$ -TBAOH-modified RRAM device under illumination with different laser power.

Fig. S16 Histogram of SET/RESET voltage of pristine devices under the NIR

illumination.

Fig. S17 Histogram of SET/RESET voltage of 0.1wt% Ti₃C₂T_x-TBAOH-modified devices under the NIR illumination.

Fig. S18 HRS/LRS resistance for 50 pristine devices under the NIR illumination.

Fig. S19 HRS/LRS resistance for 50 $Ti_3C_2T_x$ -TBAOH-modified devices (0.1wt%) under the NIR illumination.

Fig. S20 SEM images of $Ti_3C_2T_x$ -TBAOH-modified perovskite film (a-c, before illumination; d-f, after illumination).