Electronic supplementary information

Fast solution-phase growth of centimeter-sized Cs₃Cu₂X₅

(X=Cl, I) single crystals for high-performance scintillators

Xiangshi Bin,^{‡ab} Jiaxing Liu,^{‡ab} Ruosheng Zeng,^a Hongbang Liu,^{*a} Jialong Zhao,^{*a} Tao Lin^{*ab}

a School of Physical Science and Technology, Laboratory of Optoelectronic Materials and Detection Technology, Guangxi Key Laboratory for Relativistic Astrophysics, Guangxi University, Nanning 530004, China b Center on Nanoenergy Research, Guangxi University, Nanning 530004, China *Correspondence: correspondence to E-mail: liuhb@gxu.edu.cn; zhaojl@ciomp.ac.cn; taolin@gxu.edu.cn; ‡These authors contribute equally to this work.

Fig. S1. SEM and EDS scans of (a) $Cs_3Cu_2Cl_5$ and (b) $Cs_3Cu_2I_5$ single crystals (SCs). The atomic ratios of Cs:Cu:Cl/I in both samples were close to 3:2:5.

Fig. S2. (a) Crystal structure of $Cs_3Cu_2Cl_5$ SCs: The $[Cu_2Cl_5]^{3-}$ basic units in the unit cell contains two Cu⁺ ions and five Cl⁻ ions. One Cu⁺ ion coordinate with three Cl⁻ ions to forming a planar configuration. By sharing a Cl atom, two planes connect to create a folded $[Cu_2Cl_5]^{3-}$ dimer. These dimers are separated by large Cs⁺ ions, resulting in a unique 0D structure. (b) Crystal structure of $Cs_3Cu_2I_5$ SCs: There are two sites for Cu⁺ ions in one $[Cu_2I_5]^{3-}$ basic unit. In one site, the Cu⁺ ion coordinates with three Cl⁻ ions, forming a planar triangle. In the other site, the Cu⁺ ion coordinates with four Cl⁻ ions, forming a tetrahedron. These two geometries are connected by sharing two Cl⁻ ions, resulting in a complete $[Cu_2Cl_5]^{3-}$ unit. These $[Cu_2I_5]^{3-}$ basic units are separated by Cs⁺ ions to from a 0D structure.

Fig. S3. Bandgaps of (a) $Cs_3Cu_2Cl_5$ SCs and (b) $Cs_3Cu_2I_5$ SCs as determined from Tauc plots.

Fig. S4. The emission bands observed were approximately (a) 400 nm to 700 nm for $Cs_3Cu_2Cl_5$ and (b) 350 nm-650 nm for $Cs_3Cu_2I_5$. The positions and shapes of the emission bands remained consistent when the excitation wavelength was varied within a range covering the absorption edges. The excitation bands for each sample, covering a series of detecting wavelengths involved in the emission bands, showed the same position and shape.

Fig. S5. PL spectra of (a) $Cs_3Cu_2Cl_5$ SCs and (b) $Cs_3Cu_2I_5$ SCs with variable power density, the clear signs of PL saturation under high-power excitation would be observed. (c) PL intensity increased linearly with the excitation power density of $Cs_3Cu_2Cl_5$ SCs and (d) $Cs_3Cu_2I_5$ SCs.

Fig. S6. XRD patterns of (a) $Cs_3Cu_2Cl_5$ and (b) $Cs_3Cu_2I_5$ including the as-prepared samples and ones exposed to air for 15 days. This RL quenching is primarily attributed to the decomposition of cesium-copper(I) halides, as a clearer phase ascribable to CsCl was observed in the $Cs_3Cu_2Cl_5$ -PMMA sample.