Supporting Information

Broadband short-wave infrared phosphor Mg₄Nb₂O₉:Cr³⁺,Li⁺

for nondestructive safety detection and biomedical imaging

Qingyang Ding,^{1,a)} Jincheng Wu,^{2,a)} Dechao Yu,^{1,3,*} Xinxin Han,³ Yayun Zhou,⁴ Tiantian Shen,¹

Yunfeng Ma,^{2,*} Songlin Zhuang¹ and Dawei Zhang¹

¹Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China

²Institute of Crystal Growth, School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China

³MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, Guangxi 530004, China

⁴Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China

Corresponding authors:

*Dechao Yu. Email: <u>d.yu@usst.edu.cn</u>

*Yunfeng Ma. Email: yunfengma@sit.edu.cn

a) these authors contributed equally to this work

Fig. S1 Measured XRD patterns of $Mg_4Ta_2O_9:x^{9}Cr^{3+}$ (x = 1, 2, 3, 4, 5, 10) samples as well as the diffraction patterns of $Mg_4Ta_2O_9$ standard reference (PDF#38-1458). Noted that the two diffraction peaks at 21.11° and 26.61° just corresponds to the strongest peaks of quartz [PDF#01-0649, (100) at 20.885° and (101) at 26.587°] sheet used in the XRD measurements.

Fig. S2 Rietveld refinement XRD of Mg₄Nb_xTa_{2-x}O₉:3%Cr³⁺ (x = 0, 0.5, 1, 1.5, 2) phosphor samples, respectively.

Fig. S3 The crystal structure of $Mg_4Ta_2O_9$ compound and the coordination environments

Fig. S4 SEM and EDS mapping images of the obtained $Mg_4Nb_2O_9$:3%Cr³⁺ powder sample

Fig. S5 SEM and EDS mapping images of the obtained $Mg_4TaNbO_9:3\%Cr^{3+}$ powder sample

Fig. S6 SEM and EDS images of the obtained $Mg_4Ta_2O_9$:3%Cr³⁺ powder sample

Fig. S7 (a) Cr^{3+} concentration-dependent emission intensities of $Mg_{4-x}Cr_xTa_2O_9$ (x = 0.01, 0.02, 0.03, 0.04, 0.05, 0.10) samples under excitation of 468 nm. (b) Normalized emission spectra of $Mg_4Ta_2O_9:x\%Cr^{3+}$ (x = 1, 2, 3, 4, 5, 10) samples under 468 nm excitation.

Fig. S8 Emission spectra of Mg₄Ta₂O₉:3%Cr³⁺ and Mg₄Ta₂O₉:3%Cr³⁺,M⁺ (M = Li, K, Cs) under excitation of 468 nm. The same molar amount of alkali metal compounds, i.e. Li₂CO₃, K₂CO₃ and Cs₂CO₃, were also added during the synthesis of Mg₄Ta₂O₉:3%Cr³⁺ optimal phosphor, respectively. It can be seen that addition of Cs₂CO₃ does not increase the PL intensity, but the Li₂CO₃ and K₂CO₃ additives both work well. Particularly, the Li₂CO₃ plays the most effective charge compensation and/or fluxing actions.

Fig. S9 Spectral curves of QE measurement for the Mg₄Ta₂O₉:3%Cr³⁺, Mg₄Nb₂O₉:3%Cr³⁺ and Mg₄Nb₂O₉:3%Cr³⁺,Li⁺ phosphor samples ($\lambda_{ex} = 468 \text{ nm}$) by means of a Quantaurus-QY plus C13534-12 system (Hamamatsu Corp.).

Fig. S10 Diffuse reflectance spectra of the prepared Mg₄Ta₂O₉ and Mg₄Nb₂O₉ host samples.

Fig. S11 EPR spectra of the $Mg_4Nb_2O_9:3\%Cr^{3+}$ and $Mg_4Nb_2O_9:3\%Cr^{3+}, Li^+$ samples.

Fig. S12 Time-resolved emission spectra of the prepared $Mg_4Nb_1Ta_1O_9$:3%Cr³⁺ sample under pulsed light excitation of 468 nm.

Fig. S13 Normalized time-resolved emission spectra of the (a) $Mg_4Nb_1Ta_1O_9:3\%Cr^{3+}$ and (b) $Mg_4Nb_2O_9:3\%Cr^{3+}$ samples under pulsed light excitation of 468 nm, respectively.

Fig. S14 Normalized PL intensities of Mg₄Nb_xTa_{2-x}O₉:3%Cr³⁺ (x = 0, 0.5, 1, 1.5, 2) samples and that of Mg₄Nb₂O₉:3%Cr³⁺,Li⁺ sample as a function of temperature under excitation of 468 nm.

Fig. S15 Normalized PL spectra of the $Mg_4Nb_2O_9$:3%Cr³⁺,Li⁺ sample upon 468 nm excitation as a function of temperature at a 15 K interval.

Fig. S16 Ln(I_0/I_T-1) versus 1/KT plot of the temperature dependent spectra ($I_0=I_{25^\circ C}$)

$Mg_4Ta_2O_9:3\%Cr^{3+}$											
a	b	с	V	α	β	γ	R _{wp}	χ ²			
5.164588	5.164588	14.060839	324.798	90	90	120	5.3290	2.66			
	$Mg_4Ta_{1.5}Nb_{0.5}O_9:3\%Cr^{3+}$										
a	b	с	V	α	β	γ	R _{wp}	χ ²			
5.162844	5.162844	14.050849	324.348	90	90	120	8.27	1.91			
$Mg_4Ta_1Nb_1O_9:3\%Cr^{3+}$											
a	b	с	V	α	β	γ	R _{wp}	χ ²			
5.162246	5.162246	14.042261	324.075	90	90	120	8.71	1.96			
	$Mg_4Ta_{0.5}Nb_{1.5}O_9:3\%Cr^{3+}$										
a	b	с	V	α	β	γ	R _{wp}	χ ²			
5.159808	5.159808	14.031398	323.518	90	90	120	4.51	1.97			
$Mg_4Nb_2O_9:3\%Cr^{3+}$											
a	b	с	V	α	β	γ	R _{wp}	χ ²			
5.15996	5.15996	14.025994	323.417	90	90	120	8.989	2			
$Mg_4Nb_2O_9{:}3\% Cr^{3+}, Li^+$											
a	b	с	V	α	β	γ	R _{wp}	χ ²			
5.160072	5.160072	14.02422	323.386	90	90	120	5.33	2.66			

Table S1. Rietveld refinement XRD of the as-synthesized $Mg_4Nb_xTa_{2-x}O_9:3\%Cr^{3+}$ (x = 0, 0.5, 1, 1.5, 2), and $Mg_4Nb_2O_9:3\%Cr^{3+}$, Li⁺ polycrystalline powders

Phosphor sample	Internal QE	Absorbance	External QE
$Mg_4Ta_2O_9:3\%Cr^{3+}$	0.561	0.339	0.19
$Mg_4Nb_2O_9:3\%Cr^{3+}$	0.517	0.397	0.205
$Mg_4Nb_2O_9:3\%Cr^{3+},Li^+$	0.671	0.389	0.261

Table S2. The measured Internal QE, absorbance and External QE values of the Mg4Ta2O9:3%Cr3+,Mg4Nb2O9:3%Cr3+ and Mg4Nb2O9:3%Cr3+,Li+ phosphor samples under excitation of 468 nm.

	x = 0	<i>x</i> = 0.5	<i>x</i> = 1	<i>x</i> = 1.5	<i>x</i> = 2	<i>x</i> = 2, Li
Mg1-O2 ^I	2.1798	2.3956	2.4402	2.1286	2.1472	2.1529
Mg1-O2 ^{II}	2.1802	2.3954	2.4404	2.1288	2.1468	2.1525
Mg1-O2 ^{III}	2.1800	2.3958	2.4406	2.129	2.147	2.1527
Mg1-O2 ^{IV}	2.1308	1.9383	1.881	2.0393	2.113	2.0727
$Mg1-O2^{\vee}$	2.1312	1.9381	1.8808	2.0389	2.1132	2.0725
$Mg1-O2^{VI}$	2.1310	1.9378	1.8806	2.0391	2.1127	2.073
D of Mg1-O	1.137%	10.558%	12.95%	2.15%	0.799%	2.035%
Mg2-O1 ^I	2.1575	2.1761	2.1988	1.991	2.069	2.0164
Mg2-O1 ^{II}	2.1579	2.1762	2.1985	1.9915	2.0687	2.0167
Mg2-O2 ^{III}	2.1577	2.1759	2.1989	1.9913	2.0692	2.0169
Mg2-O2 ^{IV}	2.0865	2.1043	2.1208	2.2151	2.2057	2.2177
$Mg2-O2^{\vee}$	2.0870	2.1044	2.1206	2.2147	2.2053	2.2175
Mg2-O2 ^{VI}	2.0868	2.1039	2.1203	2.2149	2.2056	2.2179
D of Mg2-O	1.671%	1.679%	1.89%	5.317%	2.035%	4.748%

Table S3 Mg-O bond length in $Mg_{3.97}Nb_xTa_{2-x}O_9:3\%Cr^{3+}$ (x = 0.5, 1, 1.5, 2) and $Mg_{3.97}Nb_xTa_{2-x}O_9:3\%Cr^{3+}$, Li⁺ samples.

The polyhedral distortion (D of Mg-O) can be evaluated by the following equation:

$$D = \frac{1}{n} \sum_{i=1}^{n} \frac{|D_i - D_{av}|}{D_{av}}$$
 S1

where n is the coordination numbers, D_i stands for the separation between the center cation and ith coordinating anions, D_{av} represents the average bond length.

Table S4. Fitting functions, R-square, and calculated decay time of the Mg₄Nb_xTa_{2-x}O₉:3%Cr³⁺ (x = 0, 0.5, 1, 1.5, 2) and Mg₄Nb₂O₉:3%Cr³⁺,Li⁺ phosphors under pulsed light excitation of 468 nm.

Sample	fitting function	decay time/µs	R-square
$Mg_{4}Ta_{2}O_{9}{:}3\% Cr^{3+}$	$I=A1*exp(-t/\tau)+y_0$	$\tau\sim 22.7$	0.99868
$Mg_4Nb_{0.5}Ta_{1.5}O_9{:}3\% Cr^{3+}$	$I=A*exp(-t/\tau)+y_0$	$\tau \sim 21.7$	0.99868
$Mg_4Nb_1Ta_1O_9{:}3\% Cr^{3+}$	$I=A*exp(-t/\tau)+y_0$	$\tau\sim 20.4$	0.99901
$Mg_4Nb_{1.5}Ta_{0.5}O_9{:}3\% Cr^{3+}$	$I=A*exp(-t/\tau)+y_0$	$\tau\sim 20.2$	0.99894
$Mg_4Nb_2O_9{:}3\% Cr^{3+}$	$I=A*exp(-t/\tau)+y_0$	$\tau \sim 19.5$	0.999
$Mg_4Nb_2O_9{:}3\% Cr^{3+}{,}Li^+$	$I=A*exp(-t/\tau)+y_0$	$\tau\sim 20.0$	0.99

Table S5. PL peak (λ_{em}) and PLE peak (λ_{ex}) wavelengths, FWHM value, internal QE (IQE) and external QE (EQE), thermal stability of our prepared sample versus some reported Cr³⁺-doped long-wave broadband NIR phosphors, as well as the corresponding photoelectric performance of fabricated *pc*-LED devices.

II. ata	λ_{ex}	λ_{em}	FWHM	IQE	EQE	Thermal	NIR output	Photoelectric	D-f	
Hosts	nm	nm	nm	%	%	stability	power	efficiency		
Mg ₄ Nb ₂ O ₉ :	165	020	167	67 1	26.1	32.3%@	5.1 mW@	10.3%@20	This	
3%Cr ³⁺ ,Li ⁺	403	920	107	07.1	20.1	368K	20 mA	mA	work	
GaTaO ₄ :	460	940	140	01	N	85%@	178 mW@	6%@500	1	
0.6%Cr ³⁺	400	840	140	91	١	373K	500 mA	mA	1	
Mg ₄ Ta ₂ O ₉ :	460	850	100	70	22.4	58.4%@	60.9 mW@	22.1%@10	n	
$3\% Cr^{3+}$	400	830	188	12	55.4	373K	150mA	mA	Z	
Mg ₄ Ta ₂ O ₉ :	450	017	167	\	61.2	55%@	53.22 mW	25.09%@10	2	
$3\% Cr^{3+}$	430	042	107		5	373K	@100 mA	mA	3	
Mg ₄ Ta ₂ O ₉ :	460	850	170	\	\	82%@	11.33 mW	١	4	
$1\% Cr^{3+}$	400		1/8			423K	@300 mA	X		
ZnTa ₂ O ₆ :	490	80 935	105	24.5	13.5	49%@	39.8 mW@	4.2%@300	5	
4%Cr ³⁺	480		185			373K	300 mA	mA		
MgTa ₂ O ₆ :	460	924	140	١	١	N	\	\ \	6	
2.1%Cr ³⁺	400	034	140			X	١	X	0	
InTaO ₄ :	500	820	125	\	\	~23%@	\ \	١	7	
4%Cr ³⁺	300	839	125	N.		360 K	\ \	١	/	
GaTa _{0.5} Nb _{0.5}	17C 9CE		145	04	١	55.5%@	42.5 mW	9.37%@20	0	
$O_4:2.5\% Cr^{3+}$	476	865	145	94	١	450K	@20 mA	mA	8	
ScTaO ₄ :	510	516 940	107	\ \	\ \	~16%@	\ \	\	9	
$2\% Cr^{3+}$	516		180	١	١	373 K	١	\ \		
Cs ₂ AgInCl ₆ :	405	101	100	22.0	N	~10%@	,	,	10	
10%Cr ³⁺	405 0		180	3	١	373 K	١	١	10	
LiIn ₂ SbO ₆ :Cr	402	0 070	225	7	2.4	10%@3	١	\	11	
³⁺ :3%Cr ³⁺	492 970		223	/	3.4	68K	١	N.	11	
LiScP ₂ O ₇ :	470	000	170	38	20	41%@	19 mW@	7‰@100	12	
6%Cr ³⁺	470	880	1/0			373 K	100 mA	mA	12	
$Li_3Sc_2(PO_4)_3$:	404	079	240	240		37%@3	5.81mW@	2.62%@80	12	
8%Cr ³⁺	496 978		240	١	١	73K	80mA	mA	13	

References:

- 1 J. Zhong, Y. Zhuo, F. Du, H. Zhang, W. Zhao, S. You and J. Brgoch, *Adv. Opt. Mater.*, 2022, **10**, 2101800.
- 2 W. Tang, D. Wu, Y. Xiao, X. Dong, Y. Wang, W. Zhou, Y. Liu and L. Zhang, *Adv. Opt. Mater.*, 2022, **11**, 2202237.
- 3 S. Wang, R. Pang, T. Tan, H. Wu, Q. Wang, C. Li, S. Zhang, T. Tan, H. You and H. Zhang, *Adv. Mater.*, 2023, **35**, 2300124.
- 4 X. Ding, Y. Min, C. Wang and Q. Zhang, Infrared Phys. Techn., 2023, 131, 104697.
- 5 S. He, P. Li, Y. Ren, G. Wei, Y. Wang, Y. Yang, R. Li, J. Li, Y. Shi, X. Shi and Z. Wang, *Inorg. Chem.* 2022, **61**, 11284-11292.
- 6 G. Liu, M. Molokeev, B. Lei and Z. Xia, J. Mater. Chem. C 2020, 8, 9322-9328.
- 7 L. Qiu, P. Wang, J. Mao, Z. Liao, F. Chi, Y.Chen, X. Wei and M. Yin, *Inorg. Chem. Front.*, 2022, 9, 3187-3199.
- 8 S. Liu, G. Wang, L. Xu, H. Jia, X. Sun and H. Yuan, Ceram. Int., 2023, 49, 33401-33406.
- 9 S. Wang, S. Zhang, S. Liu, S. Han, X. Li, C. Wang and C. Li, Dalton. Trans., 2022, 51, 16325-16335.
- 10 F. Zhao, Z. Song, J. Zhao and Q. Liu, Chem. Front., 2019, 6, 3621-3628.
- 11 G. Liu, T. Hu, M. Molokeev and Z. Xia, iScience 2021, 24, 102250.
- 12 L. Yao, Q. Shao, S. Han, C. Liang, J. He and J. Jiang, Chem. Mater., 2020, 32, 2430-2439.
- 13 S. Zhao, L. Lou, S. Yuan, D. Zhu, F. Wu and Z. Mu, J. Lumin., 2022, 251, 119188.