Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Au nanoparticles confined in self-assembled Zn(II) metal-organic cubane cages for lightdriven conversion of furfural to 2-methyl furan in biofuel production

Sahil Thakur^{a,b}, Jyoti Rohilla^a, Keshav Kumar^a, Raghubir Singh^{b*}, Varinder Kaur^{a*}, Raman Kamboj^b

^aDepartment of Chemistry, Panjab University, Sector-14, Chandigarh-160014, India

^bDepartment of Chemistry, DAV College, Sector 10, Chandigarh-160011, India

*Corresponding author: var_ka04@yahoo.co.in (V.K.), raghubirsingh@davchd.ac.in (R.S.)

List of Figures and Tables					
Figure S1	FT-IR spectrum of Zn cubane	S3			
Figure S2	¹ H-NMR spectrum (500 MHz, DMSO-d ₆) of Zn cubane	S4			
Figure S3	ESI-MS spectrum of Zn cubane	S5			
Figure S4	¹ H-NMR spectrum (500 MHz, DMSO-d ₆) of ZnCC@AuNPs	S6			
Figure S5	a) N2 adsorption-desorption of Zn(II) Cubane, b) N2 adsorption- desorption of ZnCC@AuNPs , c) BJH pore size distribution of Zn Cubane, and d) BJH pore size distribution of ZnCC@AuNPs	S7			
Figure S6	a) Elemental mapping of all elements of the cubane cage (C, H, N, Br, and Zn) and b) Zn@Au(0)NPs (C, H, N, Br, Zn, and Au) at the surface.	S8			
Figure S7	DLS particle size distribution of gold nanoparticles (AuNPs).	S9			
Figure S8	Xps spectra of Zn Cubane showing presence Br 3d, N 1s, Zn 2p, C 1s, and O 1s elements.	S10			
Figure S9	Xps spectra of ZnCC@AuNPs showing presence of Au(0) 4f, O 1s, Zn 2p, Br 3d, C 1s, and N 1s elements.	S11			
Figure S10	a) PXRD pattern of Zn(II) Cubane showing a comparison of both experimental and simulated data, b) PXRD pattern of ZnCC@AuNPs and ZnCC@AuNPs after 5 catalytic cycles.	S12			
Figure S11	a) UV absorption spectrum of Zn Cubane, b) UV absorption spectrum of ZnCC@AuNPs	S13			
Figure S12	The effect of the temperature on the Furfural conversion and product selectivity.	S13			
Figure S13	¹ H-NMR spectrum (500 MHz, CDCl ₃) of 2-methyl furan product.	S14			
Figure S14	¹³ C-NMR spectrum (125 MHz, CDCl ₃) of 2-methyl furan product.	S15			
Figure S15	HPLC chromatogram of reference furfural, furan, and 2-methyl furan product.	S16			
Figure S16	Time-scaled UV-visible spectra for the catalytic transformation reaction	S17			
	of furfural to 2-MF in the presence of ZnCC@AuNPs and NaOH at 60				
	°C in IPA.				
Figure S17	Recyclability of the ZnCC@AuNPs catalyst	S18			
Table S1	Crystallographic data and structural parameters for zinc(II) cubane.	S19			
Table S2	Bonding parameters for zinc(II) cubane.	S20			
Table S3	Comparison of the catalytic activity of different catalysts for the conversion of furfural to 2-methyl furan	S21			

Fig. S1 FT-IR spectrum of Zn(II) cubane

Fig. S2 ¹H-NMR spectrum (500 MHz, DMSO-d₆) of Zn(II) cubane

Fig. S3 ESI-MS spectrum of Zn(II) cubane $[M+H]^{2+}$ peak

Fig. S4 ¹H-NMR spectrum (500 MHz, DMSO-d₆) of ZnCC@AuNPs

Fig. S5 a) N_2 adsorption-desorption of Zn(II) Cubane, b) N_2 adsorption-desorption of ZnCC@AuNPs, c) BJH pore size distribution of Zn Cubane, and d) BJH pore size distribution of ZnCC@AuNPs

Fig. S6 a) Elemental mapping of all elements of the cubane cage (C, H, N, Br, and Zn) and b) ZnCC@AuNPs (C, H, N, Br, Zn, and Au) at the surface.

Fig. S7 DLS particle size distribution of gold nanoparticles (AuNPs).

Fig. S8 Xps spectra of Zn Cubane showing the presence of Br 3d, N 1s, Zn 2p, C 1s, and O 1s elements.

Fig. S9 Xps spectra of ZnCC@AuNPs showing presence of Au(0) 4f, O 1s, Zn 2p, Br 3d, C 1s, and N 1s elements.

Fig. S10. a) PXRD pattern of Zn(II) Cubane showing a comparison of both experimental and simulated data, b) PXRD pattern of ZnCC@AuNPs and ZnCC@AuNPs after 5 catalytic cycles.

Fig. S11. a) UV absorption spectrum of Zn Cubane, b) UV absorption spectrum of ZnCC@AuNPs.

Fig. S12 The effect of the temperature on the Furfural conversion and product selectivity.

Fig. S13 ¹H-NMR spectrum (500 MHz, CDCl₃) of 2-methyl furan product.

Fig. S14 ¹³C-NMR spectrum (125 MHz, CDCl₃) of 2-methyl furan product.

Fig. S15 HPLC chromatogram of reference furfural, furan, and 2-methyl furan product

Fig. S16 Time-scaled UV-visible spectra for the catalytic transformation reaction of furfural to 2-MF in the presence of ZnCC@AuNPs and NaOH at 60 °C in IPA.

Fig. S17 Recyclability of the ZnCC@AuNPs catalyst

PARAMETERS	VALUE	PARAMETERS	VALUE	
Empirical formula	C ₁₀ H ₁₄ BrNO ₃ Zn	µ/mm ⁻¹	4.409	
Formula weight	341.50	F(000)	2720.0	
Temperature/K	231(100)	Crystal size/mm ³	$0.12 \times 0.12 \times 0.08$	
0 1 1	Tetragonal		Μο Κα (λ =	
Crystal system		Kadiation	0.71073)	
~		20 range for data	6.526 to 54.596	
Space group	$14_{1}/a$	collection/°		
/ 9	21.6092(4)		$\textbf{-27} \le h \le 26, \textbf{-24} \le k$	
a/A		Index ranges	$\leq 27, -15 \leq 1 \leq 15$	
b/Å	21.6092(4)	Reflections collected	23513	
/ 8	10 51 40(4)		$3100 [R_{int} = 0.0564,$	
c/A	12.5140(4)	Independent reflections	$R_{sigma} = 0.0448$]	
$\alpha/_{\circ}$	90	Data/restraints/parameter	3100/0/147	
β/°	90	Goodness-of-fit on F ²	1.028	
10	2.2	Final R indexes [I>=2o	$R_1 = 0.0360, wR_2 =$	
γ/°	90	(I)]	0.0674	
··· (8.2	5843.5(3)		$R_1 = 0.0545, wR_2 =$	
Volume/A ³		Final R indexes [all data]	0.0713	
_		Largest diff. peak/hole / e		
Z	16	Å-3	0.47/-0.40	
$\rho_{calc}g/cm^3$	1.553			

 Table S1 Crystallographic data and structural parameters for zinc(II) cubane.

Bond angles (°)						
O1Zn1N1	96.14(9)	C7N1C8	112.9(2)	02C9C8	110.5(2)	
O1Zn1O2 ³	103.05(8)	C8N1Zn1	110.12(17)	C4C3C2	119.3(3)	
O1Zn1O2 ²	109.26(8)	N1C7C6	111.5(2)	01C1C6	121.5(3)	
N1C8C9	109.8(2)	C5C6C7	119.9(3)	N1Zn1O2	76.24(8)	
C7N1Zn1	111.19(19)	C1C6C7	120.3(3)	01C1C2	120.3(3)	
C9O2Zn11	123.46(17)	O1Zn1O2	171.77(7)	C2C1C6	118.1(3)	
O2 ³ Zn1N1	134.48(8)	C9O2Zn1	126.66(17)	C3C4C5	120.4(3)	
O2 ³ Zn1O2	80.73(8)	C9O2Zn1	106.91(15)	O2 ² Zn1O2	77.86(7)	
C1O1Zn1	118.25(18)	C3C4Br1	119.5(2)	O2 ³ Zn1O2 ²	89.63(8)	
C5C4Br1	120.1(2)	C5C6C1	119.7(3)	C4C5C6	120.7(3)	
Bond length (Å)						
Zn1-O1	1.965(2)	01-C1	1.334(3)	C9-C8	1.507(4)	
Zn1-N1	2.023(2)	N1-C7	1.478(4)	С9-О2	1.421(3)	
Zn1-O2	2.4286(19)	N1-C8	1.479(4)	C3-C4	1.376(4)	
Zn1-O2 ³	1.9767(19)	C7-C6	1.513(4)	C3-C2	1.385(4)	
Zn1-O2 ¹	1.9980(18)	C6-C1	1.408(4)	C1-C2	1.392(4)	
Br1-C4	1.903(3)	C6-C5	1.387(4)	C4-C5	1.378(4)	

 Table S2 Bonding parameters for zinc(II) cubane.

S.No.	Catalyst	Solvent	Time	Temperature	Conversion(%)	Yield	Ref
				(°C)		(%) 2-MF	
1.	CuRe/Al ₂ O ₃	i-PrOH	4h	220	100	94	[22]
2.	Cu _{2.5} Zn-Al-	i-PrOH	4h	180	99	72	[23]
	600						
3.	CuFe ₂ O ₄	i-PrOH	1.5h	200	99.4	97	[24]
4.	Iridium/Carbo	i-PrOH	5h	220	99	95	[25]
	n						
5.	$Cu_1Re_{0.14}$	i-PrOH	6h	200	100	86.4	[26]
6.	Cu/ZnO	-	24h	200	100	94.0	[27]
7.	Cu-Fe	-	14h	220	99.4	51	[28]
8.	Cu-Co/Al2O3	i-PrOH	4h	220	100	78	[29]
9.	ZnCC@AuNP	i-PrOH	1.5h	80	100	98.60	This
	S						work

 Table S3 Comparison of the catalytic activity of different catalysts for the conversion of

 furfural to 2-methyl furan