Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Glue-like passivation of natural alkene lycopene for efficient and stable perovskite solar cells: insight from a theoretical perspective

Na Chen, Quan-Song Li* Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology, 100081 Beijing, China E-mail: <u>liquansong@bit.edu.cn</u>

Contents

Figure S1. Slab models of PbI ₂ - and MAI-terminated surfaces of MAPbI ₃
Figure S2. The planar-averaged charge density difference for LP@MAPbI ₃ -I _v
Figure S3. Charge densities of VBM and CBM
Figure S4. The configurations for O ₂ @MAPbI ₃ -I _v and LP-O ₂ @MAPbI ₃ -I _v
Figure S5. Evolution of the energy and temperature fluctuations
Figure S6. Snapshots of AIMD simulations

Figure S1. Side and top views of slab models of PbI_2 -terminated (S_{Pb-I}) and MAI-terminated (S_{MA-I}) (001) surfaces of MAPbI₃.

Figure S2. The planar-averaged charge density difference for LP@MAPbI₃-I_v along z direction. The positive value suggests the charge accumulation, and the negative value refers to the charge depletion.

Figure S3. Charge densities of CBM and VBM for (a) MAPbI₃-I_v and (b) LP@MAPbI₃-I_v. The isosurface level is 0.0008 e/Bohr^3 .

Figure S4. The side and top views of optimized configurations for (a) $O_2@MAPbI_3-I_v$ and (b) LP- $O_2@MAPbI_3-I_v$.

Figure S5. Energy evolution and temperature fluctuation for (a) $2H_2O@MAPbI_3-I_v$, (b) $4H_2O@MAPbI_3-I_v$, (c) $2LP-2H_2O@MAPbI_3-I_v$ and (d) $2LP-4H_2O@MAPbI_3-I_v$.systems.

Figure S6. Snapshots of AIMD simulations at 0, 5, 10, 15, and 20 ps for $2H_2O@MAPbI_3-I_v$, $2LP-2H_2O@MAPbI_3-I_v$, $4H_2O@MAPbI_3-I_v$, and $2LP-4H_2O@MAPbI_3-I_v$.