Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information

TITLE:

The role of spontaneous orientation polarization on charge storage behavior at an interface between organic semiconductor layers

AUTHORs:

Takahiko Yamanaka, ^a Hajime Nakanotani, *bc and Chihaya Adachi *bc

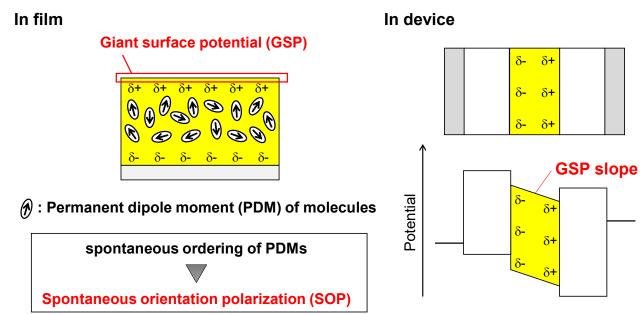
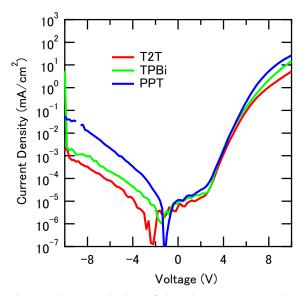
AFFILIATIONs:

- a) Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka 434-8601, Japan.
- b) Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan.
- c) International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi 819-0395, Fukuoka, Japan.

Correspondence and material requests should be addressed to H.N. (nakanotani@cstf.kyushu-u.ac.jp), C.A. (adachi@opera.kyushu-u.ac.jp).

Contents

- Figure S1: Schematic illustration of spontaneous orientation polarization and giant surface potential
- Figure S2: Current density-voltage characteristic of the charge storage device
- Figure S3: DCM characterization of T2T, TPBi, and PPT devices in dark condition
- Figure S4: DCM characterization of T2T, TPBi, and PPT devices after light irradiation
- Figure S5: DCM characteristics with open circuit treatment after light irradiation
- Figure S6: Electroluminescence of T2T device after open circuit treatment
- Figure S7: Charge storage characterization in the condition of initial charge of ~3 nC
- Figure S8: Characterization of SOP and charge storage ability in a device including different host materials
- Table S1: Electrical properties of a charge storage device including different host materials

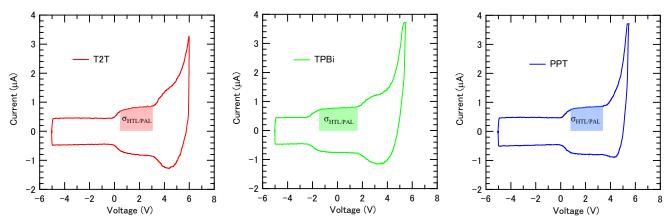

Figure S1: Schematic illustration of spontaneous orientation polarization and giant surface potential.

Figure S2.

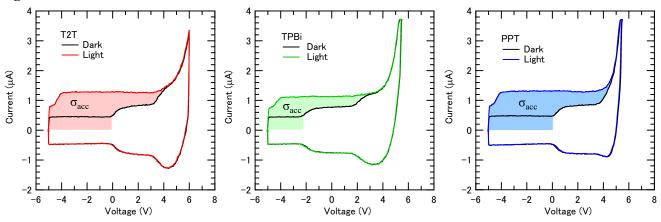

Figure S2: Current density-voltage characteristics of the charge storage devices in continuous-wave (CW) operation.

Figure S3.

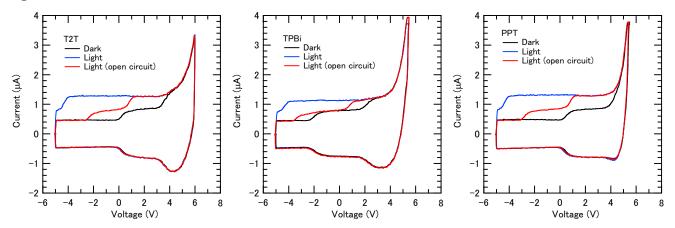
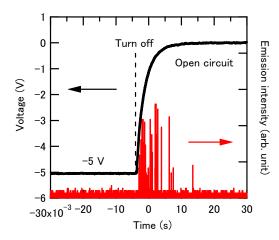
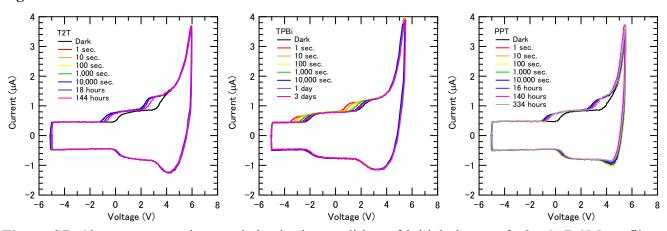

Figure S3: DCM characterization of T2T, TPBi, and PPT devices in dark condition. Interfacial charge density at HTL/PAL ($\sigma_{\text{HTL/PAL}}$) is calculated by integrating filled area.

Figure S4: DCM characterization of T2T, TPBi, and PPT devices after light irradiation. Accumulated electrons in the devices (σ_{acc} : filled area) are estimated by subtracting integration of DCM curve after light irradiation from that in dark condition.

Figure S5.

Figure S5: DCM characterization of T2T, TPBi and PPT devices after light irradiation. Accumulated electron in the devices (σ_{acc} : filled area) is estimated by subtracting integration of DCM curve after light irradiation from that in dark conditions.

Figure S6.

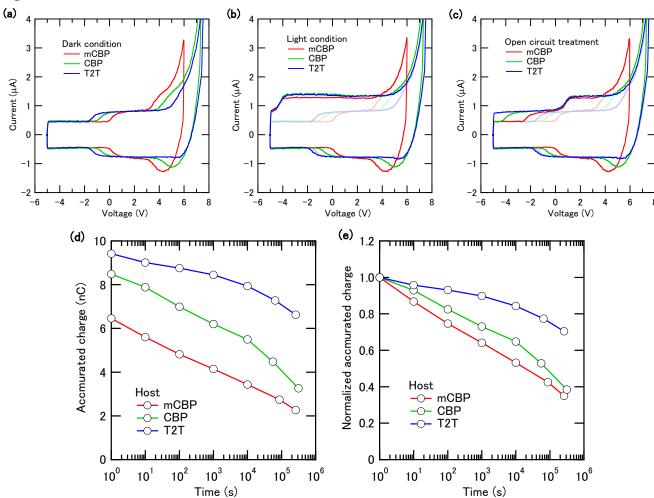

Figure S6: Electroluminescence in the T2T device after open circuit treatment.

Figure S7.

Figure S7: Charge storage characteristics in the condition of initial charge of ~3 nC. DCM profiles of each device are acquired after an arbitral hold time passed.

Figure S8: Characterization of SOP and charge storage ability in a device including different host materials. The device structure is ITO/HAT-CN (10 nm)/TAPC (50 nm)/Host:TPA-DCPP (30 nm)/T2T (50 nm)/Al. The host materials are mCBP, CBP and T2T, respectively. (a) DCM in dark condition. (b) DCM after light irradiation with applying −5 V. (c) DCM after open circuit treatment. (d) Decay of accumulated charge electrons calculated by the DCM profile. (e) Decay profiles which are normalized by the initial value.

Table S1: Electrical properties of a charge storage device including different host materials. All parameters are obtained by DCM shown in Fig.S8.

Host material	GSP (P _{PAL}) (mV/nm)	$\sigma_{\rm HTL/PAL}$ (mC/m ²)	V _{inj} (V)	$ \sigma_{ m acc} $ (nC)	$ \sigma_{\sf acc_open} $ (nC)
mCBP	32.5	-1.04	-0.09	15.4	6.4
CBP	46.3	-1.48	-1.11	16.4	9.1
T2T	60.6	-1.94	-1.75	16.1	10.4