Supporting Information

Band-Bowing Effects in Lead-Free Double Cs₂AgBi_xSb_{1-x}Cl₆ Perovskites and Their Anion-Exchanged Derivatives

Oleksandr Stroyuk^{1*}, Oleksandra Raievska¹, Anastasia Barabash², Riley W. Hooper³, Vladimir K. Michaelis³, Jens Hauch^{1,2}, Christoph J. Brabec^{1,2}

¹Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), 91058 Erlangen, Germany
²Friedrich-Alexander-Universität Erlangen-Nürnberg, Materials for Electronics and Energy Technology (i-MEET), Martensstrasse 7, 91058 Erlangen, Germany
³Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2

Author for correspondence:

^{*}Dr. Oleksandr Stroyuk, Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), Immerwahrstr. 2, 91058 Erlangen, Germany; *e-mail*: o.stroyuk@fz-juelich.de, alstroyuk@ukr.net.

Tables

Nominal Bi fraction x	Actual Bi fraction x _a	Cl/(Bi+Sb)	Cs/(Bi+Sb)	Ag/(Bi+Sb)
0	0	5.56	1.96	1.00
0.05	0.06	5.55	2.02	1.00
0.10	0.12	5.36	1.93	0.98
0.25	0.26	5.06	1.91	0.92
0.50	0.50	4.92	1.87	0.92
0.75	0.76	5.18	1.86	0.90
0.90	0.91	5.02	2.02	0.91
1.00	1.00	5.42	1.96	0.96

Table S1. Composition of Cs-Ag-Bi-Sb-Cl perovskites from EDX analysis

Table S2. Composition of the products of Cl-to-Br anionic exchange in CABSC perovskites

Bi(Bi+Sb)	Cs/(Bi+Sb)	Ag/(Bi+Sb)	Na/(Bi+Sb)	(Br+Cl)/(Bi+Sb)	Br/(Br+Cl)
0	1.51	0.68	0.13	4.70	0.64
0.07	1.53	0.86	0.12	4.45	0.65
0.12	1.47	0.36	0.14	4.60	0.65
0.25	1.68	1.04	0.19	5.55	0.66
0.47	1.89	0.97	0.27	5.90	0.68
0.82	1.96	1.02	0.18	6.00	0.67
0.94	1.97	1.00	0.25	6.05	0.68
1.00	2.01	1.04	0.21	5.80	0.68

Table S3. Composition of Cs-Bi-Sb-I perovskites from EDX analysis

Nominal Bi fraction x	Actual Bi fraction x _a	l/(Bi+Sb)	Cs/(Bi+Sb)
0	0	4.57	1.48
0.05	0.07	4.24	1.47
0.10	0.12	4.27	1.44
0.25	0.29	3.94	1.43
0.50	0.52	4.50	1.52
0.75	0.78	4.61	1.54
0.90	0.88	4.75	1.55
1.00	1.00	4.87	1.59

Figures

Figure S1. XRD patterns of $Cs_2AgBi_xSb_{1-x}Cl_6$ perovskites with a nominal Bi fraction x_n of 0, 0.50, and 1.00 (gray lines) and Rietveld refinement of the experimental data (red lines).

Figure S2. Actual Bi fraction x_a versus nominal Bi fraction x for original Cs₂AgBi_xSb_{1-x}Cl₆ double perovskites (a) and the products of anion exchange with NaBr (b) and NaI (c).

Figure S3. SEM of sample areas used for the EDX analysis, exemplary EDX spectra, and actual stoichiometries derived from EDX data for Cs₂AgBi_xSb_{1-x}Cl perovskites.

Figure S4. SEM images of $Cs_2AgBi_xSb_{1-x}Cl_6$ double perovskites with varied x and corresponding products of Br-to-Cl and I-to-Cl substitution. The scale bar is 10 μ m.

Figure S5. Normalized absorption spectra of Cs₂AgBiCl₆, Cs₂AgBi_{0.5}Sb_{0.5}Cl₆, and Cs₂AgSbCl₆ double perovskites presented in original form (solid black lines) and in Tauc coordinates for direct transitions (blue open rings) and indirect transitions (red open rings).

Figure S6. ²⁰⁹Bi MAS NMR spectra of Cs₂AgBiCl₆ (upper black trace) and mixed Cs₂AgBi_{0.5}Sb_{0.5}Cl₆ (lower blue trace) double perovskites. The presence of an unidentified secondary Bi phase is observed between 3600-3800 ppm, unfortunately overlapping with the residual first-order spinning sideband of the dominant double perovskite.

Figure S7. XRD patterns of the products of Cl-to-Br substitution in CABC double perovskites with a varied nominal ratio of y = Br/(Cl+Br).

Figure S8. SEM images of the products of Cl-to-Br substitution in CABC double perovskites with a varied nominal ratio of y = Br/(Cl+Br).

Figure S9. Raman spectra (a) and absorption spectra (b,c) of the products of Cl-to-Br substitution in CABC double perovskites with a varied nominal ratio of y = Br/(Cl+Br). In (a) the position of the highestenergy peak v is marked by an asterisk. Absorption spectra are presented in Tauc coordinates for indirect transitions (b) and direct transitions (c).

Figure S10. XRD profiles for the products of interaction between NaBr and Cs₂AgBi_xSb_{1-x}Cl₆ (CABSC) double perovskites with varied nominal Bi fraction x: gray scatter shows experimental data, solid red lines represent Rietveld refinement of the XRD patterns, green line shows the difference between experimental data and fitting curves (residuals).

Figure S11. SEM of sample areas used for the EDX analysis, exemplary EDX spectra, and actual stoichiometries derived from EDX data for the products of Cl-to-Br substitution in CABSC perovskites.

Figure S12. Normalized absorption spectra of CABBC, CABSBC (Bi:Sb = 1:1), and CASBC presented in original form (solid black lines) and in Tauc coordinates for direct transitions (blue open rings) and indirect transitions (red open rings).

Figure S13. Positions of peaks (a) and FWHM of the main peak at 82-84 ppm (b) in ¹³³Cs MAS NMR spectra of the products of anion exchange of CABSC perovskites with NaBr.

Figure S14. SEM of sample areas used for the EDX analysis, exemplary EDX spectra, and actual stoichiometries derived from EDX data for the products of Cl-to-I substitution in CABSC perovskites.

Figure S15. ²⁰⁹Bi MAS (left) and non-spinning (right) NMR spectra of Cs₃Bi₂I₉ (upper black trace) and mixed Cs₃(Sb,Bi)₂I₉ (lower blue trace) compounds.

Figure S16. Normalized absorption spectra of CSI, CBSI (Bi:Sb = 1:1), and CBI presented in original form (solid black lines) and in Tauc coordinates for direct transitions (blue open rings) and indirect transitions (red open rings).