Supporting Information

Title: Perceived the Influence of Phenyl-carbazole Isomers on Sulfone/Thioxanthonebased D-A-D Hosts: Realizing Efficient Red-Phosphorescent OLEDs

Premkumar Gnanasekaran,^a Yi-Ting Chen,^{b‡} Yun-Tzu Tseng,^a Kuan-Yu Su,^b Yu-Ting Lin,^a Tsz Chung Yiu,^a Chih-Hao Chang,^{b,*} and Yuan Jay Chang^{a,*}

⁺ Equal contribution first author

^a Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
^b Department of Electrical Engineering, Yuan Ze University, Chungli 32003, Taiwan.

Contents

1.	Experimental	S2-8
2.	¹ H and ¹³ C NMR spectra	S9-16
3.	Single crystals X-ray diffraction Analysis	S17-19
4.	CV spectra	S19
5.	Thermal stability of host materials	S20
6.	Theoretical calculation	S20-21
7.	Space-charge-limited current (SCLC)	S21
8.	Fast screen exciplex host experiments	S22

* Corresponding author

E-mail: chc@saturn.yzu.edu.tw (C.-H. Chang); Tel: 886-3-4638800-7517

E-mail: jaychang@thu.edu.tw (Y. J. Chang); Tel: 886-4-23590121-32224; fax: +886-4-23590426;

1. Experimental

All reactions and manipulations were performed under a nitrogen atmosphere unless specified, and solvents were freshly distilled according to standard procedures. The ¹H and ¹³C NMR were recorded on a Bruker AVIII HD 400. The ¹H and ¹³C NMR chemical shifts were reported on δ scale downfield from (CH₃)₄Si. The coupling constants (J) were given in hertz. Absorption spectra were recorded on a Shimadzu UV-1800 spectrophotometer, and emission spectra were obtained using a Hitachi F-4500 spectrofluorimeter. Emission spectra in solutions were measured using a spectral grade solvent and right-angle detection. Fouriertransform infrared spectroscopy (FTIR) spectra were obtained using a PerkinElmer sp100. Redox potentials were measured using cyclic voltammetry on a Zahner Ennium analyser. were performed in CH₂Cl₂ solution containing All measurements 0.1 Μ tetrabutylammonium hexaflourophosphate as supporting electrolyte under ambient conditions after purging the solution with N₂ for 10 min. The conventional three-electrode configuration was employed that consists of a glassy carbon working electrode, a platinum counter electrode, and an Ag/Ag⁺ reference electrode calibrated with ferrocene/ ferrocenium (Fc/Fc⁺) as an internal reference. Mass spectra were recorded on a Jeol JMS-700 doublefocusing mass spectrometer. Analytical thin layer chromatography (TLC) was performed on Silica gel 60 F 254 Merck. Column chromatography was performed using the silica gel from Merck (Kieselgel Si 60; 40-63 µm). Solvent THF was distilled with sodium benzophenone ketyl. Toluene and dichloromethane were distilled with CaH₂. Other solvents and reagents were reagent grade, purchased from Acros, Alfa, Merck, Lancaster, TCI, Sigma-Aldrich, and Showa, which were directly used without purification.

Fabrication and Characterization of OLEDs: Indium tin oxide (ITO)-coated glass and commercial organic materials were purchased from Lumtec and Shine Materials Technology.

Organic materials were subjected to temperature-gradient sublimation in a high vacuum before use. The ITO substrate was washed in sequence with deionized water and acetone, followed by treatment with plasma for 5 minutes. The bottom-emitting OLEDs were fabricated using ITO as the anode, followed by the deposition of multiple organic layers, topped by a metal cathode layer. The organic and metal layers were deposited by thermal evaporation in a vacuum chamber with a base pressure of $< 10^{-6}$ Torr. Device fabrication was completed in a single cycle without breaking the vacuum. The deposition rates of organic materials and aluminum were respectively kept at around 0.1 and 0.5 nm s⁻¹. The active area was defined by the shadow mask (2 × 2 mm²). Current density-voltage-luminance characterization was done using two Keysight B2901A current source-measure units equipped with a calibrated Si-photodiode. The electroluminescent spectra of the devices were recorded using an Ocean Optics spectrometer (Ocean Optics 2000).

Synthetic conditions of organic OLED hosts: (i) 30% H_2O_2 , HOAc, THF, 110 °C, 20 h; (ii) NBS, H_2SO_4 , 0 °C, 2 h; (iii) K₂CO₃, DMF, 80 °C, 14 h; (iv) (a)KOH, EtOH, H_2O , 110°C, 12 h. (b) then 3M HCl, rt, 2 h; (v) Polyphosphoric acid (PPA), 150°C, 48 h; (vi) Br₂, HOAc, 90 °C, 5 h; (vii) *o*-Bromoiodobenzene, CuI, L-Proline, K₂CO₃, DME, 80°C, 16 h (viii) (a) 2,7-Dibromofluoren-9-one, *n*-BuLi, THF, -78°C, 1 h. (b) then 2,7-Dibromofluorenone, THF, -78°C to rt, 8 h. (c) then 3M HCl, rt, 1 h. (ix) CF₃SO₃H, CH₂Cl₂, rt, 12 h. (x) 2 or 6 or 10, Pd(PPh₃)₂Cl₂, 2M K₂CO₃(aq), THF, toluene, 90°C, 18 hr.

Intermediates 1~6 and DBTS-CzP(TC-3) can be found in our previous report.^[1]

(o-Bromophenyl)(phenyl)sulfane (7). Bromoiodobenzene (16.05 g, 56.73 mmol), benzenethiol (5 g, 45.38 mmol), CuI (0.86 g, 4.54 mmol), *L*-Proline (1.05 g, 9.08 mmol) and K_2CO_3 (12.54 g, 90.77 mmol) were mixed in DMF (30 mL) at 80°C. After 16 hrs, the mixture was extracted using methylene chloride and the organic layer was dried over anhydrous MgSO₄ and evaporated under vacuum. The crude product was purifies by silica gel column chromatograph eluted with hexane, yielding a colorless liquid (7) was obtained in a 90% yield (10.83 g, 40.842 mmol). $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.61 (d, 1H, *J* = 7.84 Hz), 7.50-7.52 (m, 2H), 7.41-7.45 (m, 3H), 7.17 (t, 1H), 6.99-7.07 (m, 2H). $\delta_{\rm C}$ (100 MHz, CDCl₃) 138.5, 133.2, 132.8, 132.6, 129.5, 129.4, 128.2, 127.6, 127.0, 122.8.

2,7-Dibromo-9-(*o*-(phenylthio)phenyl)-9*H*-fluoren-9-ol (8). In a three-necked roundbottom flask, compound 7 (1.08 g, 4.06 mmol) was placed in 15 mL of dry THF at -78°C. *n*-Butyllithium (2.79 mL, 4.47 mmol; 1.6M in hexane) was added dropwise. After 1 hour, 2,7dibromo-9H-fluoren-9-one (1.65 g, 4.87 mmol) was dissolved in 50 mL of dry THF and added dropwise. After 8 hours, the mixture was quenched with 3M HCl (100 mL), and the resulting solution was extracted using methylene chloride. The organic layer was then dried with anhydrous MgSO4 and evaporated under vacuum. The crude product, obtained without further purification, yielded a yellow solid (8).

2,7-Dibromospiro[fluorene-9,9'-thioxanthene] (9). To a three-necked round-bottom flask containing crude **8** in methylene chloride (20 mL), and added CF₃SO₃H (several drops) was stirred at r.t. for 12 h. The mixture was extracted using methylene chloride and the organic layer was dried over anhydrous MgSO₄ and evaporated under vacuum. The crude product was purifies by silica gel column chromatograph eluted with hexane, yielding a white solid (**9**) was obtained in a 74% yield (1.52 g, 3.0 mmol). $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.71 (d, 2H, *J* = 1.0 Hz), 7.62 (d, 2H, *J* = 8.2 Hz), 7.52 (dd, 2H, *J* = 9.5 Hz, 1.4 Hz), 7.44 (d, 2H, 7.7 Hz), 7.19 (t, 2H), 6.93 (t, 2H), 6.54 (d, 2H, *J* = 7.8 Hz). $\delta_{\rm C}$ (100 MHz, CDCl₃) 155.7, 137.5, 135.5, 131.6, 130.9, 128.8, 128.0, 127.7, 126.4, 122.3, 121.5, 60.3.

2,7-Dibromospiro[fluorene-9,9'-thioxanthene] 10',10'-dioxide (10). To a threenecked round-bottom flask containing compound **9** (1 g, 1.98 mmol) in THF/AcOH (v/v=1/1, 24 mL) and 30% H₂O₂ (0.81 mL, 7.90 mmol) with dropwsie at 110 °C. After 20 h, the product was extracted with methylene chloride and the organic layer dried over anhydrous MgSO₄. The crude product was dried under vacuum, and was purifies by silica gel column chromatograph eluted with CH₂Cl₂/hexane (3/1). The white solid of **10** was obtained in 86.3% yield (0.92 g, 1.71 mmol). $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.25 (1H, dd, *J* = 8.9 Hz, 1.0 Hz), 7.68 (d, 1H, *J* = 8.2 Hz), 7.57-7.50 (m, 2H) , 7.46 (d, 1H, *J* = 1.6 Hz), 7.30-7.34 (m, 1H), 6.56 (d, 1H, *J* = 8.2 Hz). $\delta_{\rm C}$ (100 MHz, CDCl₃) 153.7, 138.3, 138.2, 136.7, 133.0, 132.1, 129.1, 128.8, 128.7, 123.6, 122.9, 121.7.

3,7-Bis(o-(9H-carbazol-9-yl)phenyl)dibenzo[b,d]thiophene 5,5-dioxide (DBTS-

PCz). To a three-necked round-bottom flask containing **2** (0.5 g, 1.34 mmol) and 9-(2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-9*H*-carbazole (1.73 g, 4.68 mmol), Pd(PPh₃)₂Cl₂ (141 mg, 0.201 mmol) and 2M K₂CO_{3 (aq)} (2.00 mL, 4.68 mmol) in THF/toluene (v/v=2/1, 45mL) was heated to 90°C for 18 hr. After cooling, the products were extracted with methylene chloride and the organic layer dried over anhydrous MgSO₄. The crude product was dried under vacuum, and was purifies by silica gel column chromatograph eluted with CH₂Cl₂/hexane (2/1). The yellow solid of **DBTS-PCz** was obtained in 74.2% yield (0.7 g, 1.0 mmol). $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.00 (d, 2H, *J* = 7.7 Hz), 7.59-7.67 (m, 4H), 7.50-7.53 (m, 1H), 7.25-7.29 (m, 2H), 7.14-7.17 (m, 2H), 7.01 (d, 2H, *J* = 8.0 Hz), 6.81-6.86 (m, 2H). $\delta_{\rm C}$ (100 MHz, CDCl₃) 141.0, 140.8, 138.5, 137.9, 134.8, 132.7, 131.1, 130.1, 130.0, 129.8, 129.2, 126.0, 123.1, 121.4, 121.1, 120.2, 119.9, 109.9. MS (FAB, 70 eV): m/z (relative intensity) 699 ((M+H)⁺, 100); HRMS calcd for C₄₈H₃₁N₂O₂S: 699.2101, found 699.2112.

2,7-Bis(9-phenyl-9*H***-carbazol-3-yl)-9***H***-thioxanthen-9-one (TXO-CzP). Compound TXO-CzP was synthesized according to the same procedure as that of DBTS-PCz. Yellow solid of TXO-CzP was obtained in 72.5% yield. \delta_{\rm H} (400 MHz, CDCl₃) 9.05 (s, 1H), 8.51 (s, 1H), 8.25(d, 1H,** *J* **= 7.7 Hz), 7.72-7.81 (m, 2H), 7.60-7.67 (m, 4H), 7.52 (d, 2H,** *J* **= 8.4 Hz), 7.44 (s, 2H), 7.34 (s, 1H). \delta_{\rm C} (100 MHz, CDCl₃) 178.2, 141.4, 140.7, 140.2, 137.5, 135.3, 131.7, 131.3, 129.9, 129.5, 127.8, 127.6, 127.1, 126.6, 126.3, 125.3, 124.1, 123.4, 120.5, 120.2, 118.9, 110.3, 110.0. MS (FAB, 70 eV): m/z (relative intensity) 695 ([M+H]⁺, 100); HRMS calcd. for [C₄₉H₃₁N₂OS]: 695.2152, found 695.2158.**

2,7-Bis(*o*-(9*H*-carbazol-9-yl)phenyl)-9*H*-thioxanthen-9-one (TXO-PCz).

Compound TXO-PCz was synthesized according to the same procedure as that of DBTS-PCz.

Yellow solid of **TXO-PCz** was obtained in 73.9% yield. $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.66 (d, 1H, J = 1.3 Hz), 8.03 (d, 2H, J = 7.7 Hz), 7.78 (dd, 1H, J = 9.2 Hz, 1.6 Hz), 7.58-7.67 (m, 2H), 7.51 (dd, 1H, J = 9.0 Hz, 1.3 Hz), 7.25-7.29 (m, 2H), 7.15-7.19 (m, 2H), 7.08 (d, 2H, J = 8.1 Hz), 6.83-6.88 (m, 2H). $\delta_{\rm C}$ (100 MHz, CDCl₃) 179.3, 141.0, 139.3, 137.1, 136.1, 134.8, 131.7, 131.2, 129.9, 129.4, 129.1, 129.0, 125.9, 125.6, 123.1, 120.1, 119.7, 109.8. MS (FAB, 70 eV): m/z (relative intensity) 695 ([M+H]⁺, 100); HRMS calcd. for [C₄₉H₃₁N₂OS]: 695.2152, found 695.2153.

2,7-Bis(9-phenyl-9*H*-carbazol-3-yl)spiro[fluorene-9,9'-thioxanthene] 10',10'dioxide (SpDBTS-CzP). Compound SpDBTS-CzP was synthesized according to the same procedure as that of DBTS-PCz. White solid of SpDBTS-CzP was obtained in 71.9% yield. $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.30 (d, 2H, *J* = 6.6 Hz), 8.16 (d, 1H, *J* = 7.8 Hz), 7.98 (d, 1H, *J* = 8.0 Hz), 7.78 (s, 1H), 7.44-7.62 (m, 7H), 7.38-7.40 (m, 3H), 7.27-7.34 (m, 2H), 6.82 (d, 1H, *J* = 7.8 Hz). $\delta_{\rm C}$ (100 MHz, CDCl₃) 153.3, 142.3, 141.3, 140.4, 140.2, 138.7, 137.5, 136.9, 132.9, 132.3, 129.8, 129.1, 128.3, 127.5, 127.4, 127.0, 126.1, 125.1, 124.3, 123.9, 123.4, 123.4, 120.6, 120.5, 120.0, 118.5, 110.1, 109.8, 58.2. MS (FAB, 70 eV): m/z (relative intensity) 863 ([M+H]⁺, 100); HRMS calcd. for [C₆₁H₃₉N₂O₂S]: 863.2727, found 863.2726.

2,7-Bis(*o*-(9*H*-carbazol-9-yl)phenyl)spiro[fluorene-9,9'-thioxanthene] 10',10'dioxide (SpDBTS-PCz). Compound SpDBTS-PCz was synthesized according to the same procedure as that of DBTS-PCz. White solid of SpDBTS-PCz was obtained in 74.9% yield. $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.66 (d, 1H, *J* = 1.3 Hz), 8.03 (d, 2H, *J* = 7.7 Hz), 8.10 (dd, 1H, *J* = 9.0 Hz, 1.1 Hz), 7.91 (dd, 2H, *J* = 7.9 Hz, 0.8 Hz), 7.35-7.49 (m, 5H), 7.03-7.14 (m, 7H), 6.86 (d, 2H, *J* = 7.8 Hz), 6.78 (dd, 1H, *J* = 9.4 Hz, 1.5 Hz), 5.95 (d, 1H, *J* = 7.7 Hz). $\delta_{\rm C}$ (100 MHz, CDCl₃) 152.6, 140.7, 140.3, 139.6, 139.0, 138.7, 136.2, 134.6, 132.6, 131.3, 129.4, 128.9, 128.6, 128.5, 127.9, 127.9, 125.5, 125.1, 123.1, 122.8, 119.9, 119.9, 129.2, 109.7, 57.4. MS (FAB, 70 eV): m/z (relative intensity) 863 ([M+H]⁺, 100); HRMS calcd. for [C₆₁H₃₉N₂O₂S]: 863.2727, found 863.2730.

2. ¹H and ¹³C NMR spectra

Fig. S1 ¹H NMR (upper) and ¹³C NMR (lower) spectra of 7.

Fig. S2 ¹H NMR (upper) and ¹³C NMR (lower) spectra of 9.

Fig. S3 ¹H NMR (upper) and ¹³C NMR (lower) spectra of 10.

Fig. S4 ¹H NMR (upper) and ¹³C NMR (lower) spectra of DBTS-PCz.

Fig. S5 ¹H NMR (upper) and ¹³C NMR (lower) spectra of TXO-CzP.

Fig. S6 1 H NMR (upper) and 13 C NMR (lower) spectra of TXO-PCz.

Fig. S7 ¹H NMR (upper) and ¹³C NMR (lower) spectra of SpDBTS-CzP.

Fig. S8 ¹H NMR (upper) and ¹³C NMR (lower) spectra of SpDBTS-PCz.

3. Single crystals X-ray diffraction Analysis

Fig. S9 Single crystal structures of (a) TXO-PCz, (b) DBTS-PCz, (c) DBTS-CzP, and (d) SpDBTS-

CzP.

Indentifcation Code	TXO-PCz	DBTS-CzP (TC-3)	DBTS-PCz	SpDBTS-CzP	
Empirical formula	$C_{50}H_{32}Cl_2N_2O_2S$	$C_{48}H_{30}N_2O_2S$	$C_{48}H_{30}N_2O_2S$	$C_{61}H_{38}N_2O_2S$	
Formula weight	779.73	698.80	698.80	862.99	
Temperature	150(2) K	150(2) K	150(2) K	150(2) K	
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å	
Crystal system	Triclinic	Triclinic	Orthorhombic	Triclinic	
Space group	P-1	P-1	Pbcn	P-1	
Unit cell dimensions	a = 11.0108(6) Å	a = 11.0378(5) Å	a = 32.7909(16) Å	a =12.3715(8) Å	

Table S1 Crystal data and structure refinement for OLED hosts materials.

	$\alpha = 68.1102(18)^{\circ}.$	$\alpha = 67.5033(13)^{\circ}.$	α=90°.	α= 71.3232(19)°.
	b = 13.1764(6) Å	b = 12.7509(5) Å	b = 9.3220(4) Å	b = 13.7395(8) Å
	β= 81.136(2)°.	β= 74.5113(14)°.	β= 90°.	β= 79.068(2)°.
	c = 15.4240(8) Å	c = 14.5837(6) Å	c = 26.2401(12) Å	c = 15.9996(8) Å
	$\gamma = 66.3689(18)^{\circ}.$	$\gamma = 87.8279(14)^{\circ}.$	$\gamma = 90^{\circ}$.	$\gamma = 71.866(2)^{\circ}.$
Volume	1902.27(17) Å ³	1822.71(13) Å ³	8021.0(6) Å ³	2436.1(2) Å ³
Z	2	2	8	2
Density (calculated)	1.361 mg/m ³	1.273 mg/m ³	1.157 mg/m ³	1.176 mg/m ³
Absorption coefficient	0.269 mm ⁻¹ 0.132 mm ⁻¹ 0.120 m		0.120 mm ⁻¹	0.112 mm ⁻¹
F(000)	808	728	2912	900
	0.280 x 0.230 x	0.300 x 0.240 x	0.330 x 0.290 x	0.360 x 0.340 x
Crystal size	0.130 mm ³	0.100 mm ³	0.120 mm ³	0.270 mm ³
Theta range for data collection	3.381 to 27.900°	2.678 to 27.905°	2.400 to 27.897°	2.837 to 27.921°
	-14<=h<=14,	-14<=h<=14,	-43<=h<=43,	-16<=h<=16,
Index ranges	-17<=k<=16,	-14<=k<=16,	-12<=k<=12,	-18<=k<=18,
	-20<=1<=20	-19<=1<=19	-34<=1<=34	-21<=1<=19
Reflections collected	41880	37489	147581	53620
Independent	9066 [R(int) =	8638 [R(int) =	9583 [R(int) =	11597 [R(int) =
reflections	0.0359]	0.0544]	0.0601]	0.0351]
Completeness to theta = 25.242°	99.7 %	99.1 %	99.8 %	99.7 %
	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical
Absorption correction	from equivalents	from equivalents	from equivalents	from equivalents
Max. and min. transmitttion	0.7456 and 0.6877	0.7456 and 0.6652	0.7456 and 0.6448	0.7456 and 0.6904
Refinement method	Full-matrix least- squares on F ²	Full-matrix least- squares on F ²	Full-matrix least- squares on F ²	Full-matrix least- squares on F ²

Data / restraints / parameters	9066 / 0 / 505	8638 / 0 / 478	9583 / 0 / 478	11597 / 0 / 595
Goodness-of-fit on F ²	1.009	1.010	1.068	1.006
Final R indices	R1 = 0.0421, wR2	R1 = 0.0448, wR2	R1 = 0.0475, WR2	R1 = 0.0565,
[I>2sigma(I)]	= 0.1190	= 0.1274	= 0.1249	wR2 = 0.1698
R indices (all data)	R1 = 0.0530, wR2	R1 = 0.0579, wR2	R1 = 0.0560, wR2	R1 = 0.0694,
	= 0.1301	= 0.1392	= 0.1307	wR2 = 0.1840
Extinction coefficient	n/a	n/a	n/a	n/a
Largest diff. peak and	0.879 and -1.014 e.	0.370 and -0.399 e.	0.301 and -0.522	0.873 and -0.605
hole	Å ⁻³	Å ⁻³	e. Å ⁻³	e. Å ⁻³

4. Cyclic voltammetry analysis

Fig. S10 Oxidative voltammograms of (a) TXO-CzP, DBTS-CzP, SpDBTS-CzP and (b) TXO-PCz, DBTS-PCz, SpDBTS-PCz.

5. Thermal stability of host materials

Fig. S11 (a) Thermogravimetric analysis curves and (b) differential scanning calorimetry curves of OLED host materials.

6. Theoretical calculation

Table S2 Theoretically calculated energy level of first excited triplet state (T1), HOMO-LUMO

Host	S ₀ (eV)	S ₁ (eV)	T ₁ (eV)	E _g (eV)	ΔE_{ST} (eV)	S ₀ -T ₁ Energy Gap (eV)
TXO-CzP	-5.214	-1.808	-3.008	3.406	1.200	2.206
TXO-PCz	-5.410	-1.938	-3.008	3.472	1.017	2.402
DBTS-CzP	-5.464	-2.295	-3.013	3.169	0.718	2.451
DBTS-PCz	-5.515	-2.078	-3.015	3.437	0.937	2.500
SpDBTS-CzP	-4.955	-1.402	-3.015	3.553	1.613	1.940
SpDBTS-PCz	-5.256	-1.559	-3.017	3.697	1.458	2.239

energy gap (E_g), and singlet-triplet energy difference (ΔE_{ST}) of host materials.

Compound	TXO-CzP	TXO-PCz	DBTS-CzP	DBTS-PCz	SpDBTS-CzP	SpDBTS-PCz
LUMO+1 (eV)	-0.8849	-1.1847	-1.4647	-1.3961	-1.2723	-1.3368
LUMO (S1) (eV)	-1.8081	-1.9384	-2.2946	-2.0775	-1.4021	-1.5591
HOMO (S ₀) (eV)	-5.2143	-5.4104	-5.4635	-5.5162	4.9552	-5.2564
HOMO-1 (eV)	-5.3511	-5.4115	-5.7704	-5.5204	-5.3889	-5.4828

Fig. S12 Frontier molecule orbital density distribution and energy levels of host materials.

7. Space-charge-limited current (SCLC)□

Fig. S13 Current density–voltage (*J–V*) characteristics of the hole-only and electron-only devices: (a) **TXO-CzP** and **TXO-PCz**; (c) **DBTS-CzP** and **DBTS-PCz**; (e) **SpDBTS-CzP** and **SpDBTS-PCz**. Comparative field dependence mobility: (b) **TXO-CzP** and **TXO-PCz**; (d) **DBTS-CzP** and **DBTS-PCz**; (f) **SpDBTS-CzP** and **SpDBTS-PCz**.

Mobility	BXO-CzP	BZO-PCz	DBTS-CzP	DBTS-PCz	SpDBTS-CzP	SpDBTS-PCz
Hole (cm ² /V s)	1.7 x 10 ⁻⁷	4.2 x 10 ⁻⁷	5.6 x 10 ⁻⁵	2.2 x 10 ⁻⁸	7.3 x 10 ⁻⁵	3.8 x 10 ⁻⁵
Electron (cm ² /V s)	4.9 x 10 ⁻⁹	2.4 x 10 ⁻⁷	1.4 x 10 ⁻⁵	5.1 x 10 ⁻⁵	7.4 x 10 ⁻¹⁰	6.1 x 10 ⁻⁷

Table S3 Hole/electron mobility values determined at a field of 0.25 MV/cm

8. Fast screen exciplex host experiments

Fig. S14 Normalized PL spectra of CN-T2T, the six synthesized materials, and their mixtures, in pure THF and with 90% water added. (a) TXO-CzP; (b) TXO-PCz; (c) DBTS-CzP; (d) DBTS-PCz; (e) SpDBTS-CzP; and (f) SpDBTS-PCz.

Fig. S15 The UV-Visible absorption spectrum with molar extinction coefficient (ε) vs wavelength at the concentration of 3×10^{-5} M toluene solution.

Reference

[1] T. C. Yiu, P. Gnanasekaran, W.-L. Chen, W.-H. Lin, M.-J. Lin, D.-Y. Wang, C.-W. Lu, C.-H. Chang and Y. J. Chang, *ACS Appl. Mater. Interfaces* **2023**, *15*, 1748-1761.