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Supplementary note S1 — State-of-the-art of Eu'' complexes presenting CPL
Table S1. State-of-the-art of Eu"' complexes displaying CPL, comparing molar absorptivity (€ / M cm?), overall

L
emission quantum vyield (¢Ln), dissymmetry factor (g,,m), branching ration (ﬁi) and CPL brightness (BCPL).1 The
structure of the ligands is represented in Figure S1.

€/M1cm? L |glum| ) Bepy
Complex A s/ nm) Pin (A/nm) b /M1cm?

Cs[Eu(hfbe),] 2 35000(310) 003 38093 007 >0.7
0.25(614)  0.45 59.1

[Eu(tta)s(Ph-pybox)] 3 35000(345) 05 11599 009 86.6
0.01(614)  0.74 64.7
L) 80000(303) 013 0088(590) 022 100.7
0.058 (615)  0.57 171.9

[Eu(L2)]* 5 55000 (365) 011 026095 013 102
0.11(616)  0.64 213
[Eu(tta)s(Pr-pybox)] 27000(345) 04 0240595 008 103.7
0.02(614)  0.78 84.2

[Eu(L3)] © 65000 (342) 054  0.11(599)  0.06 116
[Eu(L4)] ¢ 65000(356) 0.5  0.12(599)  0.06 117
[Eu(L5)] 7 55000(360) 055  0.11(598)  0.08 133.1
[Eu(L6)] © 65000 (343) 046  0.15(599)  0.06 134.5
(AAAA-1) ® 600000 (380) 068  0.11(592)  0.05 1122

(AAAA-2) B 800000 (380)  0.81 0.2 (592) 0.05 3240
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Figure S1. Structure of the ligands represented in Table S1.1



Supplementary note S2 - Experimental section
Materials

Eu,0; and Gd,0; (99.9%), 1,1,1,5,5,5-Hexafluoro-2,4-pentanedione  (98%), 2,6-
Pyridinedicarboxylic acid (99%), Pyrazine-2,3-dicarboxylic acid (97%), Pyridine-2-carboxylic acid (99%),
(S)-2-Amino-3-phenylpropionic acid (99%, optical purity ee: 98%), (S)-(-)-2-Amino-3-phenyl-1-
propanol (98%, optical purity ee: 99%), N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide
hydrochloride (EDC.HCI-99%), 1-Hydroxybenzotriazole hydrate (HOBt-99%) were purchased from
Merck and used without any further purification. The chiral ligands were synthesized from

enantiomerically pure aminoalcohols, whose chirality is maintained during the reaction steps.

Synthesis of the chiral S-Bn-pybox pro-ligand

The chiral ligand S-Bn-pybox (pyridine bis-oxazoline) was synthesized according to the scheme
shown in Figure S2. First, the amino acid (l) has been reduced to amino alcohol (Il). Second, the
formation of the diamide (IV) through the reaction of the 2,6-Pyridinedicarboxylic acid (lll) with L-
phenylalaninol (structure II) and EDC-HCI + HOBt was done.® The third step is the formation of alkyl
chloride with the addition of thionyl chloride to the amido-alcohol (IV). Lastly, the intramolecular
cyclization in a basic medium was performed for the formation of the oxazoline ring and consequently

the chiral ligand (V).

1-NaBH,, I,, THF , 24h oH
NH,

NH, 2- MeOH, KOH, overnigth

L-phenylalanine L-phenylalaninol

S-Bn-pybox
2,6-Pyridinedicarboxylic acid = ‘
7 Sy 0 - |
Ho - | oH 1- EDC.HCI, DCM, HOBt 1- SOCl, , CHCl,, Reflux o Ny o

v mOH CH,Clp, 25°C, 12 HO™ )j NH\/\OH 2-NaOH, MeOH, 72 h f N 1)
A

Figure S2. Scheme of the S-Bn-pybox chiral ligand synthesis.

S-Bn-pybox :1H NMR (250 MHz, Chloroform-d, Figure S3) = 6 8.23 ppm (d, J = 7.8 Hz, 2H), 7.91
ppm (dd, J = 8.2, 7.4 Hz, 1H), 7.39 — 7.20 ppm (m, 11H), 4.67 ppm (tdd, J = 9.0, 6.3, 3.4 Hz, 2H), 4.48
ppm (dd, J = 9.4, 8.6 Hz, 2H), 4.28 ppm (dd, J = 8.6, 7.6 Hz, 2H), 3.29 ppm (dd, J = 13.7, 5.2 Hz, 2H), 2.77
ppm (dd, J = 13.7, 8.9 Hz, 2H). “°C NMR (63 MHz, CDCI, Figure S4) = § 163.75, 146.34, 144.50, 137.88,

128.84, 128.25, 126.90, 53.92, 47.44 ppm. ESI-MS (Figure S5) = m/z calculated for S-Bn-pybox + H*
(CasH,3N;0,H*) 398.18622, found 398.18630. [al, = -62°. FTIR (cm-L), Figure S6 = 3056 (w), 3029 (w),



2957 (w), 2088 (w), 1657 (m), 1638 (m), 1602 (w), 1575 (m), 1540 (m), 1525 (m), 1496 (m), 1474 (m),
1454 (m), 1425 (m), 1359 (m), 1339 (m), 1319 (m), 1288 (w), 1272 (w), 1242 (m), 1219 (m), 1180 (m),
1162 (m), 1133 (s), 113 (w), 1093 (w), 1071 (m), 1029 (m), 992 (w), 978 (s), 962 (s), 933 (w), 899 (w),
859 (w), 837 (m), 764 (m), 755 (m), 743 (s), 702 (s), 664 (s), 647 (s), 621 (w), 587 (w), 556 (w), 518 (w),
504 (m), 485 (m), 450 (m), 434 (m), 413 (m).
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Figure S3. 'H-NMR spectrum of the S-Bn-pybox pro-ligand in CDCls.
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Figure S4. 13C-NMR spectrum of the S-Bn-pybox pro-ligand in CDCls.
a 100- 398.18822
¥ 807
e . S-Bn-pybox
g ]
S 60
fe)
< N
‘g 40
E N 399.18966
T ]
o
20t 39717403
1 ]398.17082 40019281 407 01820 40323821 40538180 407.17136
" 39818630
b .
80
807
. Simulated spectrum
40 399.18966 (CasH23N305)H
3 ' pa Chrg1l
20
1 40019301 402 19972 404 20397
O~ rrrrrrrrre e e
396 398 400 402 404 406
m/z

Figure S5. (a) Experimental mass spectrum of the S-Bn-pybox (C,sH,3N30,) pro-ligand compared with the (b)

simulated one using the protonated ligand (C,sH,3N30, + H*).
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Figure S6. FTIR spectrum of the S-Bn-pybox pro-ligand.

Synthesis of the (R)-Cl-(S)-Ph-pzox pro-ligand
The chiral ligand (R)-CI-(S)-Ph-pzox (pyrazine oxazoline) was synthesized from the L-phenylglicinol
(V1) and the pyrazine-2,3-dicarboxilic acid (V) (Figure S3) following the synthesis procedure for the

chiral ligand S-Bn-pybox.

(R)-Cl-(S)-Ph-pzox

pyrazine-2,3-dicarboxylic acid

OH
OH HN N
N N N A
[/ | 0 1- EDC.HCI, DCM, HOBt [/ ‘ (6] 150Cl, , CHCl;, Reflux [/ | (0]
SN 0 ©\‘/OH , CH,Cl,, 25°C, 12 h SN 0 @ 2 NaOH, MeOH, 72 h SN (o] @
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Figure S7. Scheme of the (R)-CI-(S)-Ph-pzox chiral ligand synthesis.

(R)-CI-(S)-Ph-pzox = *H NMR (250 MHz, Chloroform-d, Figure S8) = § 8.79 — 8.66 ppm (m, 2H),
7.71 ppm (d, J = 8.5 Hz, 1H), 7.50 — 7.25 ppm (m, 10H), 5.62 ppm (dd, J = 8.5, 4.7 Hz, 1H), 4.86 ppm (d,
J =45.2 Hz, 1H), 4.05 ppm (d, J = 5.4 Hz, 2H), 2.01 ppm (d, J = 6.3 Hz, 2H). 13C NMR (63 MHz, CDCl;,
Figure S9) = 6 163.75, 146.34, 144.50, 137.88, 128.84, 128.25, 126.90, 77.59, 77.08, 76.57,53.92, 47.44
ppm. ESI-MS (Figure S10) = m/z calculated for (R)-Cl-(S)-Ph-pzox + H* (C5,H1CIN,O,H*) 398.18622,
found 398.18630. [a], = +114°. FTIR (cm™), Figure S11 = 3062 (w), 3034 (w), 2965 (w), 2930 (w), 1736
(W), 1640 (s), 1558 (m), 1541 (m), 1516 (s), 1495 (s), 1475 (w), 1456 (m), 1435 (m), 1400 (m), 1375 (w),
1355 (w), 1337 (w), 1308 (w), 1287 (m), 1278 (m), 1253 (m), 1218 (m), 1190 (m), 1163 (m), 1111 (s),
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1062 (m), 1027 (m), 1002 (w), 982 (m), 949 (m), 906 (m), 876 (m), 857 (m), 830 (m), 800 (w), 769 (s),

749 (m), 731 (m), 693 (s).
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Figure S8. 'H-NMR spectrum of the (R)-CI-(S)-Ph-pzox pro-ligand in CDCls.
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Figure S9. 13C-NMR spectrum of the (R)-CI-(S)-Ph-pzox pro-ligand in CDCls.
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Figure S10. (a) Experimental mass spectrum of (R)-Cl-(S)-Ph-pzox (C,H19CIN4O,) compared with the (b)
simulated one for the protonated pro-ligand with a water molecule (C;,H19CIN4O, + H* + H,0).
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Figure S11. FTIR spectrum of the (R)-CI-(S)-Ph-pzox pro-ligand.

Synthesis of the S-Ph-pyox pro-ligand
The chiral pro-ligand S-Ph-pyox (pyridine oxazoline) was synthesized according to the scheme
shown in Figure S7. First, pyridine-2-carboxylic acid (IX) was esterified in the presence of methanol and

thionyl chloride, leading to the ester methyl (X). Subsequently, the ester was heated in a sealed tube
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in the presence of the amino alcohol L-phenylglicinol. The last two steps are according to those
described above for alkyl chloride formation and cyclization (S-Bn-pybox).%°

L-Phenylglycinol

S-Ph-pyox
Vi
Pyridine-2-carboxylic acid
OH OMe
- SOCl,, CHCl,, reflux |
N Yo _s00i,MeoH N o N weo QA ! v - /NI o
X Reflux, 24h A sealed tube 120 C 12h 2-  NaOH, MeOH, 72h X
IX X Xil

Figure S12. Scheme of the S-Ph-pyox chiral ligand synthesis.

S-Ph-pyox = *H NMR (250 MHz, Chloroform-d, Figure S13) = 6 8.73 ppm (d, J = 7.7 Hz, 1H), 8.53
ppm (d, J = 4.8 Hz, 1H), 8.17 ppm (d, /= 7.8 Hz, 1H), 7.83 ppm (td, /= 7.7, 1.8 Hz, 1H), 7.42 — 7.25 ppm
(m, 6H), 5.28 ppm (dt, /= 7.7, 5.4 Hz, 1H), 4.00 ppm (d, J = 5.3 Hz, 2H). 13C NMR (63 MHz, CDCl;, Figure
S14)=6164.73,149.53,148.14,139.01, 137.48, 128.86, 128.56, 127.86, 126.88, 126.40, 122.45, 66.54,
56.13 ppm. ESI-MS (Figure S15): m/z calculated for S-Ph-pyox + H* (C;,H1,N,OH*) 225.10237, found
225.10224. [a]p = -10°. FTIR (cm-L, Figure S16) = 3086 (w), 3058 (w), 3028 (w), 2929 (w), 2875 (w), 1654
(s), 1591 (m), 1568 (m), 1515 (s), 1495 (m), 1465 (s), 1431 (s), 1354 (w), 1287 (m), 1242 (m), 1190 (w),
1154 (m), 1066 (m), 1040 (m), 1027 (m), 996 (m), 905 (w), 837 (w), 819 (m), 746 (s), 696 (s).
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Figure $13. 'H-NMR spectrum of the S-Ph-pyox pro-ligand in CDCl;. The extra proton observed within the 7.25 —
7.5 ppm is associated with CHCI; formed by proton exchange in CDCls.
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Figure S15. (a) Experimental mass spectrum of S-Ph-pyox (C14H1,N,0) compared with the (b) simulated one for

the protonated pro-ligand (C14H1,N,0 + H*).
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Figure S16. FTIR spectrum of the S-Ph-pyox pro-ligand.

Synthesis of the complexes

Lanthanide(lll) acetates and [Ln(hfa);(H,0),] (hfa = hexafluoroacetylacetonate) precursor complex
were prepared as reported elsewhere.1:12

The chiral lanthanide complexes were synthesized by dissolving 50-100 mg of the chiral ligand and
a stoichiometric amount (1:1) of the precursor complex in 10 mL of methanol. The chiral ligand was
added dropwise into the solution of the precursor complex. The reaction solution was refluxed and
stirring for 24 h. The solvents were evaporated, and the solids were dried at 40 °C for 24 h. The powder
complexes were obtained after solvent evaporation and despite several attempts to crystalize the
product, no good-quality crystals for single-crystal X-ray (SC-XRD) analysis were obtained.

[Gd(hfa)3(S-Bn-pybox)] = ESI-MS: m/z calculated for ([Gd(hfa);(S-Bn-pybox)] + 3H* + CH;0H)
1211,1165 found 1211.1855 (Figure S18 — S20). FTIR (cm™, Figure $S36) = 1653 (s), 1585 (m), 1553 (m),
1523 (m), 1498 (s), 1453 (m), 1382 (m), 1345 (w), 1253 (s), 1194 (s), 1135 (s), 1098 (m), 1041 (w), 1016
(m), 971 (m), 946 (m), 850 (w), 831 (w), 793 (m), 746 (m), 700 (m), 660 (m), 583 (M), 547 (w), 525 (w),
506 (W), 462 (w). Anal. Calcd (%) for CaoH0sF1,N3Gd (1176.1 g mol): C, 40.8; H, 2.23; N, 3.57. Found:
C, 39.15; H, 2.86; N, 3.47.

[Gd(hfa)s3((R)-Cl-(S)-Ph-pzox)] = ESI-MS: m/z calculated for ([Gd(hfa);((R)-Cl-(S)-Ph-pzox)] + H* + H,0
+ CH;0H) 1236.0520, found 1236.0528 (Figure S24-27). FTIR (cm™, Figure S36) = 1649 (s), 1557 (m),
1530 (m), 1494 (m), 1473 (m), 1454 (m), 1416 (m), 1373 (w), 1350 (w), 1318 (w), 1254 (s), 1198 (s),
1135 (s), 1097 (s), 1079 (m), 1056 (m), 1027 (m), 950 (w), 874 (w), 840 (w), 795 (m), 764 (m), 738 (m),
723 (m), 697 (m), 659 (m), 581 (m), 525 (m).
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[Gd(hfa)3(S-Ph-pyox)] = ESI-MS: m/z calculated for ([Gd(hfa);(S-Ph-pyox)] + 2H* + Na*) 1027.9882,
found 1027.9966 (Figure S21-23). FTIR (cm, Figure S36) = 1651 (s), 1634 (s), 1594 (m), 1572 (m), 1554
(m), 1528 (m), 1496 (m), 1475 (m), 1400 (w), 1345 (w), 1309 (w), 1252 (s), 1194 (s), 1137 (s), 1097 (m),
1069 (m), 1054 (m), 1032 (m), 1012 (m), 950 (w), 842 (w), 798 (m), 753 (m), 740 (m), 725 (m), 699 (m),
659 (s), 634 (w), 583 (m), 528 (m). Anal. Calcd (%) for CyoH15N,05F15Gd (1002.67 g mol?): C, 34.74; H,
1.51; N, 2.79. Found: C, 31.82; H, 2.10; N, 2.96.

[Eu(hfa);(S-Bn-pybox)] = ESI-MS: m/z calculated for ([Eu(hfa);(S-Bn-pybox)] + Na*) 1192.05 found
1192.06 (Figure S28 —S30). FTIR (cm™?, Figure S36) = 1653 (s), 1585 (m), 1553 (m), 1523 (m), 1498 (s),
1453 (m), 1382 (m), 1345 (w), 1253 (s), 1194 (s), 1135 (s), 1098 (m), 1041 (w), 1016 (m), 971 (m), 946
(m), 850 (w), 831 (w), 793 (m), 746 (m), 700 (m), 660 (m), 583 (m), 547 (w), 525 (w), 506 (w), 462 (w).

[Eu(hfa);((R)-CI-(S)-Ph-pzox)] = ESI-MS: m/z calculated for ([Eu(hfa)s;((R)-CI-(S)-Ph-pzox)] + Na* +
H,0) 1219.00351, found 1219.00275 (Figure S33 and $S34). FTIR (cm, Figure S36) = 1649 (s), 1557 (m),
1530 (m), 1494 (m), 1473 (m), 1454 (m), 1416 (m), 1373 (w), 1350 (w), 1318 (w), 1254 (s), 1198 (s),
1135 (s), 1097 (s), 1079 (m), 1056 (m), 1027 (m), 950 (w), 874 (w), 840 (w), 795 (m), 764 (m), 738 (m),
723 (m), 697 (m), 659 (m), 581 (m), 525 (m).

[Eu(hfa);(S-Ph-pyox)] = ESI-MS: m/z calculated for ([Eu(hfa);(S-Ph-pyox)] + H,O + Na*) 1036.97882,
found 1036.97968 (Figure S31 and 32). FTIR (cm™, Figure S36) = 1651 (s), 1634 (s), 1594 (m), 1572 (m),
1554 (m), 1528 (m), 1496 (m), 1475 (m), 1400 (w), 1345 (w), 1309 (w), 1252 (s), 1194 (s), 1137 (s), 1097
(m), 1069 (m), 1054 (m), 1032 (m), 1012 (m), 950 (w), 842 (w), 798 (m), 753 (m), 740 (m), 725 (m), 699
(m), 659 (s), 634 (w), 583 (m), 528 (m).

Characterization

13C and 'H NMR. Proton and carbon nuclear magnetic resonance (*H NMR and 3C NMR)
measurements were performed in a Bruker spectrometer, model Avance Il 250 MHz by dissolving the
samples (~30 mg) in deuterated chloroform.

Mass spectrometry. Mass spectra of ligands and Eu" and Gd" chiral complexes were obtained in
a 1:1 (volume) solution of methanol and water, using electron spray, positive or negative mode, in the
range of 150 to 2000 m/z in the Thermo Q Mass Spectrometer -Exactive (Q-Obritrap).

TG and DTA. Thermogravimetric (TG) and differential thermal analysis (DTA) were performed in a
TA Instruments SDT Q600 equipment. The measurement was carried out under a dynamic atmosphere
of synthetic air (100 mL min'!) and a heating rate of 10 C min-.

SROT. Specific rotation (SROT) values were collected by a Perkin ElImer-341 Polarimeter, using a 10

mm optical path and a sodium lamp at a wavelength of 589 nm, at 20 °C.
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UV-VIS absorption. Ultraviolet and visible (UV-Vis) absorption spectra were collected using an
Agilent HP 8453 spectrophotometer at 300 K, step of 1 nm.

CD. Circular dichroism (CD) spectra were collected using a Jasco J-720 Spectropolarimeter with an
Xe lamp (450 W). Parameters: standard sensitivity of 100 mdeg, 1 nm date pitch, 2.0 nm bandwidth,
continuous scan mode, 1 s response, scan speed of 100 nm min and 8 accumulations.

DRS. Diffuse reflectance spectra (DRS) in the absorbance mode were obtained for the unmixed
powder complexes using a SHIMADZU UV-2450 equipment with integrating sphere, increment of 1
nm, and BaSQ, as reflectance standard.

PL. Photoluminescence spectra (PL) of powder complexes were obtained at 293 K in a Horiba Jobin-
Yvon FL3-22-iHR-320 spectrofluorometer in front-face mode using a Xe lamp (450 W) as excitation
source. All spectra were corrected according to the response of the photomultiplier (Hamamatsu PMT)
and Xe lamp emission. Emission lifetime was recorded by using a time correlated single-photon

counting (TCSPC) system (FluoroHub-B) linked with a pulsed 150 W Xenon lamp.

Ln
Absolute emission quantum yield. Emission quantum yield (CD L) was measured in a Quanta -¢ F-
3029 integrating sphere coupled by optic fibers to the previously mentioned fluorimeter. For
reference, the empty sphere coated with Spectralon® (reflectance > 95%) was used. The emission

guantum yield is given by Equation S1, where Ng,, and N, are the number of photons emitted and

st
absorbed by the sample, respectively, Iemis the emission spectrum of the sample, and lex and Tex stand
for the excitation spectra of the light used to excite the sample and the integrating sphere empty,

respectively.

A
f 1,,(M)dA
N, . A
(DLLn _ NEmL _ 1 . (51)
Abs
f Ioedd - | I,,(A)dA
/13 }‘3

CPL. The circularly polarized luminescence (CPL) spectra of the chiral Eu" complexes in solutions
were obtained at 298 K using the same previously mentioned spectrofluorometer in the right angle
(RA) mode. In the CPL measurement, a depolarizer at the excitation output was used, while a quarter
wave plate was located after the chiral sample followed by a linear emission polarizer as shown in
Figure S17. The linear polarizer is positioned by the software of the equipment itself. For the calibration
of the CPL measurements, a solution of the standard complex [Eu(D-facam)s] (0.005 mol L) in dried
dimethyl sulfoxide (DMSO) was used. Under excitation at 363 nm, the complex shows gy, value of
~0.78 relative to the most intense Stark component of the emission band attributed to the >Dy—>7F;

transition (~¥585 nm) of Eu'.13
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Circular polarized luminescence spectroscopy (CPL) is based on the difference between the

spontaneous emission intensities of left circular polarized light /,(A) and right Iz(A) (Eqn S2).1415.16
Al = (I, (A) - (D) (52)

CPL measurements are standardized by the luminescent dissymmetry factor (g,,), as defined
in Eqn S3. A g,mvalue equal to £2 indicates complete polarization of the light emitted, while a value of
zero corresponds to unpolarized emission.

_L®- L)

g lum (/‘l) -
SLA)+ LW

Recently, researchers in the area proposed that the measurements be reported in terms of
CPL brightness (Eqn S4), which facilitates the comparison of CPL performance, as it also relates
absolute quantum yield and molar absorptivity of the compound.*’
|glunJ
Bep, =1 b By — ($4)

L
Where ¢, is the molar absorptivity at the wavelength used, Pin is the absolute quantum yield of

emission and Piis the branching ratio (Eqn S5): ©

i

=——(55)
by

Bi

Linear excitation

polarizer

Out In Quarter Wave-plate

315° or 45°

Out \\ﬁ(%;
Linear emission Linear emission

polarizer 2 \ polarizer 1

Figure S17. Set up of the CPL measurements, where IN means positioned and OUT not activated. The depolarizer
ensures that all the detected polarized light comes from the sample. The quarter-wave plate has the function of
setting in phase the components of the electric field, hence, converting circular polarized light into linear
polarized light. The linear polarizer is used as a filter to select left and right circularly polarized light. The
difference in angle between the quarter-wave plate and the linear polarizer must be 45° to observe circular
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polarized light. In this case, we chose to set the manual quarter-wave plate at 90° and vary the linear polarizer in
45° and 315°, to minimize errors arising from the angle precision.

Supplementary note S3 — Computational procedure
All electronic structure calculations were conducted using the ORCA 5.0.3 software package?®.

The methodology encompassed an initial optimization of the ground state geometry within the
framework of density functional theory (DFT) employing PBEO functional®®. During the optimization,
all atoms except Eu" were treated with the Def2-TZVP basis set??, while the adapted Stuttgart-Cologne
MWAB52 effective core potential?’22 was applied for Eu". Subsequent to the ground-state geometry
optimization, energies and wavefunctions were computed using a multireference approach,
specifically the CASSCF/NEVPT2+QDPT approach?*24, This method involved two sequential steps: (i)
establishment of an active space consisting of the seven 4f orbitals; (ii) complete active space self-
consistent field (CASSCF) calculation to derive eigenvalues and eigenvectors of excited states?®. The
energies of these excited states were corrected by adding the n-electron valence perturbation theory
at second-order (NEVPT2)%¢ wherein the inclusion of spin-orbit coupling (SOC) was realized through
quasi-degenerate perturbation theory (QDPT) in which the Eu" multiplets were mixed via the spin-
orbit mean field (SOMF) operator?’”. The multireference calculations integrated the scalar relativistic
Douglas-Kroll-Hess approximation?® at the second order (DKH2) with the scalar relativistic recontracted
(SARC2-QZVP) basis set? specifically tailored for Eu'.

Following the computation of excitation energies for the complexes, the total transition
momentum was decomposed into magnetic (uyp) and electric dipole (ugp) component contributions
using MultiWFN software3°. The dissymmetry factor was calculated according to reference [3'],
detailed in Eqn S6, where Dy is the total dipole momentum of the excited state and Ry is the rotatory
strength, defined in Eqn S7, where 9e © 2 is the free-electron g-factor, L, and S, are the components
of the one-electron operators for the orbital and spin angular momentum, respectively, while Fys
represents the ground-state wavefunction and ¥es the excited state wavefunction. Subsequently, the
normalized magnetic and electric pair component vectors’ coordinates (x, y, z) were acquired through
a custom python script. This script commences with the eigenvectors extracted from each transition
as obtained from CASSCF calculation3!. The angles between the electric and magnetic dipole were
calculated by adapting the Eqn 2 of the main text, yielding Eqn S8, where the module of the electric
and magnetic dipole components was taken directly by the output file of the CASSCF/NEVPT2+QDPT
calculation and transformed to esu? cm? using a conversion factor for @ = 471.44x10% as explained in

reference32.
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4Rif ) 5
9= v Dy = |ugp|” + |umpl™ (56)
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e
Rifz Im[‘ulf . mlf] = Im Z(l'pgs ern | lpes><l‘pgs an +g65n l'pes> (57)
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The solvent was included in the multireference excited state calculations as a static medium
by considering the dielectric constant and refractive index of acetonitrile (36.6 and 1.344, respectively)

and dichloromethane (9.08 and 1.424, respectively) using the universal solvation model (SMD)33.

Supplementary note S4 —Judd-Ofelt parameters and photophysical properties
Experimental Judd-Ofelt parameters and experimental photophysical properties

For Eu" complexes, experimental Q,and Q, (Eqn S9) Judd-Ofelt intensity parameters, radiative

Eu
(Egn S10) and non-radiative decay probabilities (A), and intrinsic emission quantum yield (CDEu, Eqn
S11) were obtained from the emission spectrum through the LUMPAC” software. 34 In these equations,

w is the angular frequency of incident radiation, xy = n(n+2)?/9 is the Lorentz local-field correction, n is

(FIU@1PDo)[?

the refractive index of the medium (1.500), is 0.0032 or 0.0023 for J = 2 and 4,
respectively, Ag is the spontaneous emission probability, Ay;=14,6:n°, T is the emitting state lifetime,
and Sy, is the area under the band assigned to the °Dy—>7F, transition. In this approach, the Qg
parameter is not calculated because the °Dy—>7Fg transition is not observed in the monitored emission
range. %

3hc* Ay,

Q= 2 3117 M5 2(59)
8me‘w )(|( F]||U I D0)|

VosJ\P01
A
d l
q)gz — A ra — tota (511)
Total Trad

Theoretical intensity parameters.

qtheo . . . o
(** 2 ) play a crucial role in providing valuable insights

The theoretical intensity parameters
into the chemical environment surrounding Eu'" ion.3> These parameters were determined using Egn

S12 —S14.
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2
| /ltpl
cheo_(2/1+1)z By, = BOED + BDC (512)

t *x
BI;b;D:i( t+ 1) (t )( 4m )1/2 Zezp-g-(Zﬁ-)Hl YPJ' (513)
P AE 2t+1 - 9] J Rt+1

J

t

Baup = [ % Y f| ¢ |f (Zt-fl)l/z (Z[(Zﬂ ) e+ “]RYPJI ta+1 (S14)

Inthese equations, the forced electric dipole (FED) derived from the original Judd-Ofelt theory3®
37 is represented by using Eqn S13 in the framework of the simple overlap model (SOM)32. The
numerical factors (0(t.4)) establish the relationship between the f-g and f-d interconfigurational
transitions and 4f radial integrals, with specific values as follows: ©(1,2) =-0.17 0(3,2) =0.34,
0(3,4) =0.18, 0(5,4) =- 0.24, 0(5,6) =- 0.24, and

0(7,6)
=0.24 V. Trannoy, A. N. C. Neto, C. D. S. Brites, L. D. Carlos, H. Serier - Brault, Adv.
,2021,9,200193.

39 Additionally, AE represents the average energy denominator method*. The overlap charge

associated with the coordinating atom and Ln'"' is described by the charge factor (g; Eqn S15) and
overlap integral (p)), wh|Ie =(1+ ,0]) 35, The site environment symmetry is considered by summing

t *
over j with the conjugated spherical harmonics (Yp,f). On the other hand, Eqn S14 expresses the

contribution of dynamic coupling (DC)*! within the framework of the bond overlap model (BOM)3®. This

model characterises the polarizability of the ligand through %or,, and %i. The former represents the

bond overlap polarizability (Eqn S16) while the latter denotes the effective polarizability of the ligand3>.

K

e2p. sz

]

Top, =2— (516)
}

In these equations, R; is the bond length, A%; is the first excitation energy associated with the
Ln-L ligating atom species, and 1 is the force constant of the Ln — L bond. The electron charge is

represented by e while Pj is the overlap integral. The values of A% and Pj were extracted from reference

[42] using an exponential fit.

Intramolecular energy transfer.
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The rates of intramolecular energy transfer (IET) from the antenna ligand to Eu"' were
computed by considering three mechanisms: dipole—dipole (Wd-d), dipole—multipole (Wd-m), and
exchange (Wex). These calculations were performed according to Eqn S17 —$1943444546_|n all equations
R, is the donor-acceptor distance and QF?D denotes the intensity parameters regarding only the FED

contribution. The squared reduced matrix elements <¢.]. ’ |U(A)| |¢’]>2 were obtained from ref [*’], and
the matrix elements (W' | 1S11¥/)* were calculated using wave functions of the free ions within the
intermediate coupling scheme*®4°, The S, relates to the dipole strength of the ligand transition involved
in the IET process. For singlet (S;) and triplet (T;) states, S, has values of 103® and 10 esu? cm?,
respectively*3. The multiplicity of the excited states is considered in the degeneracy factor (G=1or 3
for S; and T,, respectively), while (rl) is the 4f radial integrals and (f| |C(D| |f) corresponds to the
reduced matrix elements of Racah’s tensor operators®. Additionally, the effect of shielding is
considered through the term (1-0y) (for k =1 and 2) related to the overlap integrals between the

valence ligand orbitals and the lanthanide!. The spin operator in the ligand is given by s, and #z

represents the dipole operator component along the z-axis*.

S.(1-01) ame? FED i | 17 2
=g agh s W7 Il )

S, 2me? (T/1>2 Y
Waen=Gre e h 2t Dy e ey [0t [y )
o)

sty o

In the context of lanthanide-based systems, the IET process is a non-resonant energy transfer

_ (1 - ‘7,1)2 8me’
2]+ 1)Gh R*

Wy ’F (519)

PNEOERG
J

mechanism?®, Consequently, the energy mismatch condition between the donor (ligands) and acceptor
(Eu™) is essential, as shown in Egn S19. In this equation, the quantitative difference between the

barycentre of the donor and the acceptor state of the lanthanide ion is denoted by 6. Furthermore,

the parameter YD represents the bandwidth at half-height of the donor states (S; and T;) and is

assumed to have a value of 3000 cm for both singlet and triplet states*.

5 \2
1 [In(2 '(T) in()
pot @, W (520)
hypy m

Rate equations and overall emission quantum yield.
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After determining the rates of IET, the next step involves solving a system of rate equations,
which consists of coupled ordinary differential equations (ODEs). This system can be solved numerically
through time propagation*3, enabling the obtention of the population dynamics of each energy level.
The set of ODEs is presented in Eqn S21, where both summations encompass all levels within the
system?352, The populations of the levels |i} and |j) are denoted as ©'i and ), respectively, while Wj-i

and Wisj represent the rates of energy transfer between these states. Thus, a rate equation model

with N-levels can be described by a set of N-coupled ODEs.

dPi(t)
dt

Z W,_iPi(0) - Z WoPi(0), %) (S521)

j=1 j=1

In this study, a set of coupled ODEs was solved using Radau methods. These methods have
been successfully employed in previous investigations, delivering reliable results at a feasible
computational cost>*54%, Each simulation was conducted over a time interval ranging from 0 — 50 ms
with a step size of 1 ns. By solving the rate equations model, it is possible to estimate the population

I = AradP

of the emitting level (°Dy, Pg) of Eu" and consequently the emission intensity E, Here A4 is

the spontaneous emission coefficient calculated from the Judd-Ofelt intensity parameters3637.43,

Supplementary note S5 — Mass spectrometry of the Gd"' chiral complexes
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Figure S18. Mass spectrum of [Gd(hfa);(S-Bn-pybox)].
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Figure $19. Experimental mass spectrum of [Gd(hfa);(S-Bn-pybox)] with emphasis on the 969 m/z region
compared with the simulated one for the complex lacking one of the B-diketones.
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Figure S20. Experimental mass spectrum of [Gd(hfa);(S-Bn-pybox)] with emphasis on the 1211 m/z region
compared with the simulated one for the complex with three protons (3H*) and one molecule of methanol.
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Figure S22. Experimental mass spectrum of [Gd(hfa)s;(S-Ph-pyox)] with emphasis on the 1056 m/z region
compared with the simulated one for the complex without one of the B-diketones and with two water molecules.
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Figure S23. Experimental mass spectrum of [Gd(hfa)s;(S-Ph-pyox)] with emphasis on the 1027 m/z region

compared to the simulated one for the protonated complex (2 H*) with one sodium ion (Na*).
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Figure S24. Mass spectrum of [Gd(hfa)s((R)-Cl-(S)-Ph-pzox)].
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Figure S25. Experimental mass spectrum of [Gd(hfa);((R)-CI-(S)-pzox)] with emphasis on the 1232 m/z region
compared with the simulated one for the protonated complex (H*) with two (R)-CI-(S)-Ph-pzox ligands and one
B-diketone and three water molecules.
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Figure S26. Experimental mass spectrum of [Gd(hfa);((R)-CI-(S)-pzox)] with emphasis on the 996 m/z region
compared with the simulated one for the complex lacking one of the B-diketones and with one water molecule.
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Figure S27. Experimental mass spectrum of [Gd(hfa)s;((R)-CI-(S)-pzox)] with emphasis on the 1236 m/z region
compared with the simulated one for the protonated complex (H*) with one water molecule and one of
methanol.

Figure S28. Mass spectrum of [Eu(hfa)s(S-Bn-pybox)].
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Figure S29. Experimental mass spectrum of [Eu(hfa);(S-Bn-pybox)] with emphasis on the 1194 m/z region
compared with the simulated one for the complex associated with one Na*. The fragment at 1194.05 m/z (with
some contribution of the other at 1194.15 m/z) was studied by MS2 fragmentation, Figure S30.
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Figure $30. MS2 experimental mass spectrum of [Eu(hfa);(S-Bn-pybox)] with emphasis on the 1195 m/z region
compared with the simulated one for the ([Eu(hfa);(S-Bn-pybox)] + Na*) and ([Eu(hfa),(S-Bn-pybox)]*) fragments.
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Figure S31. Mass spectrum [Eu(hfa);(S-Ph-pyox)].
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Figure S32. Experimental mass spectrum of [Eu(hfa)s;(S-Ph-pyox)] with emphasis on the 1039 m/z region
compared to the simulated one for the complex associated with one sodium ion (Na*) and one H,0.
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Figure S33. Mass spectrum of [Eu(hfa)s((R)-CI-(S)-Ph-pzox)].
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Figure S34. Experimental mass spectrum of [Eu(hfa)s;((R)-Cl-(S)-Ph-pzox)] with emphasis on the 1221 m/z region
compared to the simulated one for the complex associated with one sodium ion (Na*) and one H,0.
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Supplementary note S6 — Thermogravimetry of the complexes
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Figure $35. TG (in blue) and DTA (in red) curves of the chiral Ln"' complexes (a) [Eu(hfa)s(S-Bn-pybox)], (b)
[Gd(hfa)3(S-Bn-pybox)], (c) [Eu(hfa)s((R)-CI-(S)-Ph-pzox)] (d) [Gd(tta)s((R)-CI-(S)-Ph-pzox)], (e)
[Eu(hfa);(S-Ph-pyox)], and (f) [Gd(hfa)s(S-Ph-pyox)].
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Table S2. Residual mass calculated from TG compared to the expected value from the thermal decomposition of
the chiral complexes, leading to the formation of the respective Ln,0s.

Residual Residual Residual Residual
Complex mass mass (%) Complex mass (%) mass (%)
(%) cal. exp. cal. exp.
[Eu(hfa)3(S-Bn-pybox)] 15 15 [Gd(hfa);(S-Bn-pybox)] 15 15
[Eu(hfa)s(S-Ph-pyox)] 17 14 [Gd(hfa)s(S-Ph-pyox)] 20* 23
[Eu(hfa)s((R)-CI-(S)-Ph-pzox)] 15 15 [Gd(hfa)z)(z(:))(')]c"(s)'Ph' 15 17

* The calculation of the theoretical residual mass used Ln,0,COj; as the final residue.
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Supplementary note S7 — FTIR of the chiral complexes
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Figure S36. FTIR spectra of (a) [Ln(hfa);(S-Bn-pybox)], (b) [Ln(hfa)s;((R)-Cl-(S)-Ph-pzox)], and (c)
[Ln(hfa)s(S-Ph-pyox)] (Ln — Eu or Gd). The FTIR spectra of chiral Gd" and Eu" complexes (Fig. $29) present C=C
and C=0 coupled vibrational modes at 1520 cm™ as well as a bending mode coupled to C-H + C=C vibrations at
about 1500 cm™. The bands between 1150 and 1050 cm™ are assigned to coupled vibrations of C-F; + C-H bonds,
while the vibrational modes assigned to the C=0 stretch are found at about 1650 cm™ for all the complexes.
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Supplementary note S8 — Additional photoluminescence data

The excitation spectra of the powder complexes, Fig. 3, are characterized by a broad excitation
band within the 250 — 420 nm assigned to ligand-centered S¢Sy transitions (n* ¢ processes) as well
as a sharp band at 464 nm coming from the Eu" °D,<7F, transition. Upon ligand excitation at about
350 nm, Fig. 3, the typical Eu" emission within the orange-red spectral window is observed due to the
Eu>Dy>7F, (J = 0-4) electronic transitions whose higher intensity of the band assigned to the >°Dy>7F,
transition suggests that the Ln" is inserted in low-symmetry sites. By comparing the excitation and
emission spectral of the chiral complexes with the [Eu(hfa);(H,0),] precursor, some important
differences are observed, which confirm that the chiral ligand is indeed coordinated to Eu", changing
the local symmetry of the Eu" first coordination environment compared to the precursor complex.
These differences are better seen by comparing the relative intensity of the ligand-centered excitation
bands at about 275 nm and 350 nm compared to the Eu" f-f band at 464 nm, the number of J
components observed per each °Dy,—=>7F, transition in the emission spectra, and also in the relative
intensities of these bands, ensuring that the local Eu" microsymmetry is changing after the
coordination of the chiral ligand.

Eu" is a special case within the Ln" series because it can be used as a spectroscopic probe to
get further insights into its local microssimetry. This feature arises from the fact that for Eu'", the °Dq
emitting state is non-degenerate, thus, the number of Stark components of each emission band
depends only on the receptor level of the transition. As a consequence, since Eu" is a non-Kramers
ions, the maximum crystal field (CF) splitting of a level into M, Stark sublevels should be 2/ + 1 (J = total
angular momentum quantum number), hence, the number of components per each °Dy—>7F, transition

is given by 2J + 1.
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Figure S37. High-resolution photoluminescence spectra (13 K) of (a) [ Eu(hfa)s(S-Bn-pybox)], (b) [Eu(hfa);((R)-Cl-
(S)-Ph-pzox)], and (c) [Eu(hfa)s(S-Ph-pyox)] upon 370 nm excitation.

Table S3. Number of J components observed for the Eu" >Dy—>7F, transitions depending on the Eu" point group.>®

Point group o " 2 s Fa
C, CeC, 1 3 5 7 9
Cy 1 3 4 5 7
Ciand Cyy, 0 3 0 0 0
D, 0 3 0 6 6
D5h 0 3 3 0 0
Dy 0 2 0 3 3
Ds 0 2 2 4 4
G 1 2 2 5 6
Csy 1 2 3 3 5
Csp 0 2 1 3 4
C3i, D3q, D5h, C4h, Dap, andT 0 2 0 0 0
Dsp 0 2 1 2 3
Cy 1 2 2 3 5
(O 1 2 2 2 4
Dag 0 2 0 1 2
S, 0 2 3 4 4
D, 0 2 1 3 3
Ce and Cev 1 2 2 2 2
Ds 0 2 1 2 1
T, 0 1 1 1 1
Th, O and Iy, 0 1 0 0 0
0] 0 1 0 1 1




34

Supplementary note S9 — Triplet state determination and absorption properties
The Gd"' complexes were considered to determine the triple state energy since the energy of
Gd" excited levels is considerably higher than the typical energy of triplet states, inhibiting any ET
process. As a consequence, the emission of Gd" systems arises mainly from triplet states. The triplet
excited-state energy of the analogous Gd"' complex was determined by the measurement of the time-

resolved low-temperature (77 K) phosphorescence spectra (Fig. S31).
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Figure S38. Time-resolved (delay of 0.5 ms) emission spectra (77 K) of (a) [Gd(hfa);(S-Bn-pybox)], (b)
[Gd(hfa)s((R)-ClI-(S)-Ph-pzox)], and (c) [Gd(hfa)s;(S-Ph-pyox)] compared with the steady-state emission. The
deconvolution of each spectrum was carried out by applying a gaussian function. To avoid any emission coming
from short-lived singlet excited states or vibronic components, time-resolved emission spectra measured at 77
K were recorded while the zero-phonon transition energy obtained by the band energy inset was considered for
the assignment. The peak at 16200 cm™ is assigned to the Eu"' emission, usually found as contaminants in Gd,03
(purity of 99.9%) yet, the band position of such contaminant does not match the region where emission bands
are important for triplet state determination, so, the analyses are not compromised.
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By taking advantage of the electronic nature of Gd", the ligand-to-metal charge transfer
(LMCT) states can be elucidated by diffuse reflectance spectroscopy, since no LMCT states should be
observed for the Gd" complexes. The arithmetic subtraction of the diffuse reflectance spectra of
complexes containing Eu" by their Gd'"'analogous clearly shows the presence of LMCT states (Fig. S32)
for the Eu" complexes. The complex [Eu(hfa);((R)-CI-(S)-Ph-pzox)], for instance, showed a LMCT band
in the region of 20883 cm™ (Fig. S32b).
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Figure $39. Diffuse reflectance spectra (DRS) of (a) [Ln(hfa);(S-Bn-pybox)], (b) [Ln(hfa)s((R)- CI-(S)-Ph-pzox)], and

(c) [Ln(hfa)3(S-Ph-pyox)] (Ln = Eu or Gd). The difference between the DRS spectra of Eu" and Gd" analogous
complexes is shown in the bottom of the figure.
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Supplementary note S10 — Time-resolved spectroscopy
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Figure S40. Emission decay curves monitoring the excitation at about 345 nm and the Eu"' emission at 613 nm
for (a) [Eu(hfa)3;(H,0),], (b) [Eu(hfa)s;(S-Bn-pybox)], (c) [Eu(hfa)s;(S-Ph-pyox)] e (d) [Eu(hfa)s((R)-CI-(S)-Ph-pzox)].
The continuous red line represents the best fitting to a monoexponential function (R? > 0.95).
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Supplementary note S11 — Theoretical photophysical parameters of Eu'"' complexes

L
Table S4. Theoretical Judd-Ofelt intensity parameters (Q,46) at 293 K, theoretical overall quantum yield (CDLn),
and first singlet (S;) and triplet (T;) excited state energies calculated at the CASSCF/NEVPT2+QDPT level.

Complexes Q, Q, Q; ol S;/em?t T;/cm?
/1020 cm? /1020 cm? / 10°2° cm? In /%
[Eu(hfa)s(S-Bn-pybox)] 19.3 5.80 0.56 42 35595 22845
[Eu(hfa)s((R)-CI-(S)-Ph-pzox)] 20.7 6.60 1.65 25 35691 22956
[Eu(hfa)s(S-Ph-pyox)] 23.0 7.15 1.63 36 30885 22730

Table S5. Calculated donor-acceptor distance (R,) related with Figure S34 — S36 for both singlet (S) and triplet (T)
excited states and total rates of forward and backward intramolecular energy transfer (W and W?, respectively).

Complexes Singlet Triplet
RIK Wipe Whn RIA Wi vl
[Eu(hfa)3(S-Bn-pybox)] 4.413 4.502x104 6.058x1071° 4.823 6.687x107  9.796x10°

[Eu(hfa)s((R)-CI-(S)-Ph-pzox)] 3.285 9.847x10° 1.038x10713 4.629 9.859x107  1.629x107
[Eu(hfa);(S-Ph-pyox)] 4.269 1.172x107 5.727x1073 4,783 7.611x107 9.837x10°

S0 5

35595 cm™?
n—n
n—rn

R =4.413 A

So— Ty

22845 cm'!
non
n—mn

R =4.823A

Figure S41. Monoelectronic states involved in the absorption spectrum singlet-singlet and singlet-triplet
excitations for [Eu(hfa)z(S-Bn-pybox)] complex calculated using CASSCF/NEVPT2+QDPT.
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Figure S42. Monoelectronic states involved in the absorption spectrum singlet-singlet and singlet-triplet excitations for
[Eu(hfa)s((R)-Cl-(S)-Ph-pzox)] complex calculated using CASSCF/NEVPT2+QDPT.
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Figure S43. Monoelectronic states involved in the absorption spectrum singlet-singlet and singlet-triplet excitations for
[Eu(hfa)3(S-Ph-pyox)] complex calculated using CASSCF/NEVPT2+QDPT.
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Table S6. Energy transfer rates (in s™) for [Eu(hfa)s;(S-Bn-pybox)] complex considering only the states that
contribute more than 0.001% for S; and Ti. & is the donor-acceptor (singlet/triplet-Eu3*) energy difference

Woga Wy-aW

(in cm™). ex are the dipole-dipole, dipole-multipole, and exchange rates (in cm™1), respectively.

b
W and W" are the forward and backward energy transfer rates, respectively at 298.15 K.

Pathway Donor Accept o) Wd -d Wm -d Wex w Wb

10 S1 TFg—>5lg 10270  1.396x10? 9.275 0 1.488x10%  4.119x10°%
15 S; "Fo—>°Gg 8843 2.757x10%2  1.833x10! 0 2.941x10%  7.965x1071
18 S1 7Fg—>°Dy 8009 1.439x10? 1.987x03 0 2.131x10°  4.664x1071>
29 S1 Fp—>°D, 11612 5.938x1072  1.003x10? 0 1.003x10%2  1.196x107%2
31 S; TF1—>5Ly 9610 3.011x10? 2.001 0 3.211x10*  2.803x107%°
32 Si F1—°G; 9575 0 0 4.029x10*  4.029x10*  1.249x1071°
33 S1 ’F1—>°G3 9345 2.027 1.959x103 0 1.961x103 1.318x1071¢
35 S1 ’F1—>°Gg 9215 1.445x10' 9.607x107! 0 1.541x10'  1.044x107%8
36 S1 "F1—>°Gs 9204 2.978x10'  1.177x10! 0 4.155x10*  3.508x10718

Total S: 4.502x10* 6.058x10715
7 Ty 7Fo—>°D; 3818 0 0 6.158x107  6.158x107  2.454x107
26 Ty 7F1—>°Dg 5924 0 0 3.609x10®  3.609x10°  2.507x107°
28 Ty ’F1—°D, 1734 0 0 1.672x106 1.672x10° 1.403x103
32 Ty F1—>°G, 3175 0 0 6.015x10'  6.015x107!  9.791x10°

Total T, 6.687x107 9.792x10°

Table S7. Energy transfer rates (in s71) for [Eu(hfa);((R)-CI-(S)-Ph-pzox)] complex considering only the states that
contribute more than 0.001% for S; and Ty. O is the donor-acceptor (singlet/triplet-Eu3*) energy difference

Wy a Wy_aW

(in cm™). ex are the dipole-dipole, dipole-multipole, and exchange rates (in cm™), respectively.

b
W and W" are the forward and backward energy transfer rates, respectively at 298.15 K.

Pathway Donor  Accept ) Wy_g W 4 W, w wP

10 S; Fo—>°Lg 10366 1.314x103 8.986x102 0 2.212x10°  3.856x10720
15 S1 7Fg—>°Gg 8939 2.651x103 1.813x103 0 4.465x10®  7.608x107Y
18 S1 7Fo—>°D4 8105 1.094x103 6.107x10* 0 6.216x10*  8.561x10714
29 S1 7Fg—>°D4 11708 3.575x10!  5.669x10? 0 5.669x10%> 4.256x10°%2
31 S1 TFi>3Ly 9706 2.862x10? 1.958x102 0 4.821x102  2.648x10718
32 S1 F1—>°G, 9671 0 0 9.019x10° 9.019x10°>  1.760x1074
33 S; 7F1—>°G3 9441 1.369x10? 1.174x104 0 1.174x10*  4.971x10716
35 S1 ’F1—°Gg 9311 1.382x102 9.453x10! 0 2.327x10%  9.922x10718
36 S1 7F1—>°Gs 9300 2.833x10? 4.873%10? 0 7.705x10%  4.094x1077

Total S: 9.847x10°> 1.038x10713
7 Ty 7Fo—>°D; 3929 0 0 9.089x107 9.089x107  2.120x107!
26 T, 7F1—°Dg 6035 0 0 5.138x10° 5.138x10° 2.089x10°°
28 T, 7F1—%D, 1845 0 0 2.558x10° 2.558x10° 1.256x103
32 T, F,—>°G,  -3064 0 0 1.709 1.709 1.628x107
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Total T1 9.859x10’ 1.629x107

Table S8. Energy transfer rates (in s71) for [Eu(hfa)s;(S-Ph-pyox)] complex considering only the states that
contribute more than 0.001% for S; and Ty. 6 is the donor-acceptor (singlet/triplet-Eu3*) energy difference
Wd—d, Wm—dl w

(in cm). ex are the dipole-dipole, dipole-multipole, and exchange rates (in cm™1), respectively.

b
W and W" are the forward and backward energy transfer rates, respectively at 298.15 K.

Pathway Donor  Accept ) Wi_a W_a Wy w wb
10 S1 TFo—>5Lg 5560 1.331x10* 4.920x103 0 1.823x10*  3.749x107°
15 S1 7Fo—>°Gg 4133 9.337x103 3.453x103 0 1.279x10*  2.572x10°
18 S1 7Fo—°Dgy 3299 2.536x103 1.789x10° 0 1.815x10° 2.950x1073
29 S; 7F1—5D, 6902 2.251x10! 1.758x10° 0 1.759%x10° 1.557x10°
31 S1 F—°Ly 4900 1.779x103 6.577x10? 0 2.436x10°  1.579x1077
32 S1 F1—°G, 4865 0 0 1.060x107 1.060x107 2.441x1073
33 S1 F1—°G; 5650 1.249x102 6.619%10° 0 6.620%x10° 3.303x10™
35 S; 7F1—5Gg 4505 6.410x102 2.370x102 0 8.781x10%?  4.418x1077
36 S1 7F1—°Gs 4494 1.309x103 2.582x103 0 3.890x10°  2.439x10°°
Total S1 1.172x107 5.727x1073
7 T,  ’Fo>°D, 3703 0 0 7.001x107  7.001x107  4.859x101
26 Ty 7F1—>°Dg 5809 0 0 4.259x10° 4.259x10®  5.154x107°
28 Ty ’F1—°D; 1845 0 0 1.832x10° 1.832x106 2.678x103
32 T, F,—°G, -3064 0 0 3.469x101 3.469x10'  9.834x10°
Total Ty 7.611x107 9.837x10°

From the determined energy transfer rates, a set of coupled ordinary differential equations
(ODEs), capturing the population kinetics can be generated (Eqn $22).57 In this equation, |0} is the
ground state (att =0, the Spand t # 0, 7F)), |1} is T;, I2) relates to S;, I3) represents any Eu"" manifold
other than 5Dy, and |4) represents the 5D, level. Additionally, s, ', and 7 are the decay lifetimes of the
S;, T, and 5D, levels. In Eu'-based systems, these lifetimes typically range from 10 to 10 s for s,
106 to 103 s for T, and 1073 s for 7. The rate of S;->T; intersystem crossing (ISC), denoted as W, is
on the order of 107 s7* for energy gaps between S; and T; of 10000 — 15000 cm~?, which is the case for
the studied complex. When simulating population dynamics using Egn 1, it is essential to consider the
boundary conditions to ensure the conservation of the total population across all energy levels at any
given time t, meaning that the sum of the population of all states, denoted as PN(t), remains constant

within the time interval O=t= ty,

|0) <p PP, + Yo v tp 4 1p (522a)
:—Pg,=- — — - a
de © N R

,d _ (1 T T T b
1) Py ==+ W'+ W |Py + Wy5cP, + WPy (522D)
T
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d
12): 4¢P =" (r_ + W+ WISC)PZ + WyPs + P, (S220)
s

. d — S T T S d
13): Z7Ps == (Wh+ Wy + W3 ,)P3+ WPy + WP, (S22d)

d 1 '
14): S Pa=- (;)P4 + WP, + W, 4P (S22€)



42

Supplementary note S12 — Time-resolved spectroscopy of the complexes in solution

[Eu(hfa);(S-Bn-pybox)]-DCM [Eu(hfa),(S-Ph-pyox)]-DCM [ [Eu(hfa),((R)-CI-(S)-Ph-pzox)]-DCM
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Figure S44. Emission decay curves monitoring the excitation at about 303 nm and the Eu'! emission at 613 nm
for the Eu" complexes in ACN or DCM. The continuous red line represents the best fitting to a monoexponential
or biexponential function (R? > 0.95).
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