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Fig. S1 FT-IR spectra of BaTiOs.

As shown in Fig. S1, the bands at 591 and 415 cm™! in the BaTiO; spectrum
correspond to the characteristic vibrations of Ti-O and Ba-O, respectively, indicating
the formation of a perovskite structure. The C=0 band at 1636 cm™! and the C-N band
at 1293 cm! observed from the BaTiO; spectrum are the characteristic bands for PVP.
The band at 1463 cm! can be identified as the bending vibration of the C-H bond. The
appearance of a band at 3400 cm™! can be assigned to the stretching vibration of the
O-H bond, and the band at 2961 cm™! is assigned to the stretching vibration of the C-H
bond. These characteristic peaks also indicate the existence of organic functional

groups on the surface of ultrafine BaTiO; during the fabrication process.
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Fig. S2 Cross-section SEM images of the BaTiO;@CS/PP composites filled with (a)

0.1vol%; (b) 0.3vol%; and (c) 0.4vol% of BaTiO3;@CS nanoparticles.
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Fig. S3 The SEM image and the EDS chemical elements distribution of

BaTiO;@CS/PP composite filled with 0.2 vol% BaTiO;@CS.
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Fig. S4 Cross-section SEM image of the BaTiO3/PP composite filled with 0.2 vol%

BaTiO3.
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Fig. S5 The TGA result of CS within the testing temperature range of 25 to 600

°C.
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Fig. S6 Frequency-dependent dielectric

composites at different temperatures.
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Supplementary method 1-Weibull statistical distribution

P(E)=1-exp ( - (E)ﬁ)
Ev) ], where P(E) is the

The calculation formula is as follows:
cumulative failure probability, E is the applied electric field, £} is the characteristic
breakdown strength at the cumulative failure probability of 62.8%, and f is the shape
parameter for evaluating the dispersion of experimentally tested data. The £ value is

related to the reliability of the experimental data. The higher # value indicates the

better structural stability of a dielectric material.
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Fig. S7 (a) Electric potential distribution; and (b) electric field distribution of 0.2

vol% BaTiOs/PP composite by the finite element simulation.
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Fig. S8 (a) Electric potential distribution; and (b) electric field distribution of PP

by finite element simulation.
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Fig. S9 (a) Electric potential distribution; and (b) electric field distribution of 0.4

vol% BaTiO3;@CS/PP composite by finite element simulation.
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Fig. S10 The D-E loops of (a) 0.1 vol% BaTiO;@CS/PP composite; (b) 0.2 vol%
BaTiO3;@CS/PP composite; (¢) 0.3 vol% BaTiO3;@CS/PP composite (d) 0.4 vol%
BaTiO3;@CS/PP composite; (e) neat PP; (f) 0.2 vol% BaTiOs;/PP composite and

(g) 0.2 vol% CS/PP composite.
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Fig. S11 D,,,-D, dependence of BaTiO;@CS/PP composites with the different

loading contents of BaTiO;@CS nanoparticles at varied electric fields.
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Fig. S12 (a) Frequency dependency of dielectric constant and dielectric loss,
measured at 25 °C; (b) Weibull statistic breakdown strength; (c¢) deduced
characteristic breakdown strength; and (d) Discharged energy density and charge-
discharge efficiency of PP; 0.2 vol% BaTiO;/PP composite; 0.2 vol% CS/PP

composite and 0.2 vol% BaTiO;@CS/PP composite at varied electric fields.

To further verify the obtained excellent energy storage performance is originated
to the well-designed electrically-charged BaTiO;@CS ultrafine nanoparticles, the
comparisons of dielectric and energy storage performances among PP, BaTiO;/PP,
CS/PP, and BaTiO3;@CS/PP composites (filler fraction of these composites is constant
as 0.2 vol%) are made and shown in Fig. S12.

To evaluate the influence of the BaTiO;@CS nanoparticles on the dielectric

property of the composites, both dielectric constant and dielectric loss as a function of
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frequency were studied by using broadband dielectric spectroscopy (Fig. S12 a). The ¢,
values of BaTiOs/PP and CS/PP composites are 2.58 and 2.16 at 100 Hz, respectively,
which are slightly higher than that of neat PP. However, the BaTiO;@CS/PP composite
dielectric exhibits the highest ¢, value of 2.67 and the lowest tan .

The Weibull statistical distribution of PP, BaTiO;@CS/PP, BaTiO3/PP and CS/PP
composite dielectrics are shown in Figs. S12 b and c. The BaTiO;@CS/PP composite
shows the highest £, the £, of the CS/PP composite is medium, the £, of BaTiO3/PP
composite is lowest. In fact, since the ¢, values of BaTiO;/PP, CS/PP and
BaTiO3;@CS/PP composites are approximative, so the trend of recoverable energy
storage density is similar to the trend of £},. As shown in Fig. S12 d, the energy storage
density of BaTiO;@CS/PP composite is the optimal (4.76 J/cm?), that of the CS/PP
composite (2.31 J/cm?) is the medium and that of the BaTiO3/PP composite is the lowest
(1.95 J/cm?). Based on the results of D-E loops, the charge-discharge efficiency (7) is
calculated. The 5 decreases as electric field increases. Moreover, the BaTiO;@CS/PP
composite shows the highest 7 of 94%, the CS/PP composite also maintains a high level
of 91.5%, the lowest 7 is achieved by the BaTiO3/PP composite, with a # value of only
84% (Fig. S12 d). It is further confirmed that the obtained outstanding energy storage

capability is mainly due to the synergistic effect of ultrafine BaTiO; and charged CS.

S-15



300

[ Breakdown Strength
[ Discharged Energy Density I

N

N

<
1

. ZrO,/PP
. MgO/PP-BaTiO,/PP-MgO/PP

. PP-g-MAH/org-MMT
. BaTiO;@EPDM/PP

. PP-g-AA/ZrO,

. PAS13/PP
. BNNS/PP-g-MAH/PP
. this work BaTiO;@CS/PP

9. BaTiO;@PMMA/PP
10. PP/PP-g-MAH/org-MMT

[\

S

<
1

150 -

100 H

I

i

|

|

|
LN N AW N -

Enhancement Ratio (%)

ol

1 2 3 4 5 6 7 8 9 10

n
= 2
¥
|

I

I
B

|
—
<

I

I
.

I

Fig. S13 The comparison of the enhancement ratios of breakdown strength and
discharged energy density of PP-based composite dielectrics that reported in this

work and previously published works of literature.

Since the energy storage performance such as £, and U, of a composite is related
to the corresponding polymer matrix, the relative enhancements in E;, (defined as
(Ey/E,-1) x 100%) and U, (defined as (U./U,-1) x 100%) are calculated respectively.
Where E, and U, were used to represent the breakdown strength and discharge energy

density of the polymer matrix, respectively.

S-16



