Supporting Information

The Unique Luminescent Properties and Enhanced Thermal Stability of A Novel All-Inorganic Perovskite CsCaCl₃:Mn²⁺ for Solid-state Lighting Application

Zhichao Liu^a, Yuexiao Pan^{a,*}, Xiaoxiao Fu,^a Yihong Ding^a, Liyi Li^{b,*}

^aKey Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry

and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China.

E-mail: yxpan@wzu.com

^bSchool of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China.

E-mail: lily255@mail.sysu.edu.cn

Figure S1. Rietveld refinement plots of the XRD patterns and experimental XRD patterns of CsCaCl₃ and CsCaCl₃:Mn²⁺.

Figure S2. The high-resolution XPS of Cs, Ca, Cl, and Mn element in CsCaCl₃:Mn²⁺.

Figure S3. Schematic diagram illustrating the energy transfer mechanism from STE to Mn²⁺ in CsCaCl₃:Mn²⁺.(GS: ground state; FE: free excitons state; FC: free carrier state)

Figure S4. The chromaticity coordinates diagram of CsCaCl₃: xMn^{2+} (x = 0%, 0.8%, 1%, 1.6%, 2%, and 5%).

Figure S5. Emission spectra ($\lambda_{ex} = 275 \text{ nm}$) of CsCaCl₃:*x*Mn²⁺ varied with *x* value.

Figure S6. Dependence of the energy transfer efficiency from STE to Mn^{2+} on the concentration of Mn^{2+} .

Figure S7. (a, c) Temperature-dependent PL emission spectra, and (b, d) Emission wavelength and intensity of CsCaCl₃ as a function of measurement temperature (a,b) heating and (c,d) cooling processes, respectively.

Figure S8. (a, c) Temperature-dependent PL emission spectra, and (b, d) Emission

wavelength and intensity of Mn^{2+} emission in CsCaCl₃:2%Mn²⁺ as a function of measurement temperature (a,b) heating and (c,d), respectively.

Figure S9. EL spectra of WLEDs fabricated with the CsCaCl₃: xMn^{2+} (x = 0.8%, 1%, 2%) measured on various working currents.

Compounds	Debye temperatures (K)	Refs
Rb ₄ CdCl ₆	154.0	[29]
KCaF ₃	367.3	[39]
CsPbCl ₃	225.4	[40]
RbCaF ₃	270.0	[41]
Rb ₂ TeCl ₆	235.2	[42]
K ₂ LiAlF ₆	267.0	[43]
FAPbBr ₃	205.0	[44]
CsCaCl ₃	233.7	This work
CsCaCl ₃ :Mn ²⁺	227.7	This work

 Table S1. Recently reported the Debye temperatures of all-inorganic metal halide perovskite

 materials

[29] J. C. Jin, Y. H. Peng, Y. T. Xu, K. Han, A. R. Zhang, X. B. Yang and Z. G. Xia,

Chem. Mater., 2022, 34, 5717-5725.

- [39] X. Liu, J. Fu, Vacuum, 2020, 179, 109504.
- [40] M. A. Ghebouli, B. Ghebouli, M. Fatmi, *Physica B Conden. Matter*, 2011, 406, 1837-1843.
- [41] K. S. Knight, J Solid State Chem., 2018, 263, 172-181.
- [42] Q. Mahmood, M. H. Alhossainy, M. S. Rashid, T. H. Flemban, H. Althib, T. Alshahrani, M. Rashid, A. Laref, *Mater. Sci. Eng. B*, 2021, 266, 115064.
- [43] Z. Umar, M. S. Kurboniyon, O. Khyzhun, T. Yamamoto, C. G. Ma, M. G. Brik,
 M. Piasecki, *J. Lumin.*, 2024, 266, 120278.
- [44] R. Mayengbam, J. T. Mazumder, Inter. J. Energy Res., 2022, 46, 17556-17575.