Controllable dual-polarization valley physics in strain engineered 2D monolayer of VC_2N_4

Chengan Lei,^a Shiyu Cao,^a Zelong Gong,^a Xinru Li,^b Yandong Ma,^b Jian Gao,^a Jianqiang Bi,^a Rajeev Ahuja,^c Zhao Qian^{a,*}

^aKey Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China

^bSchool of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China

^cCondensed Matter Theory, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Uppsala 75120, Sweden

*Corresponding author: qianzhao@sdu.edu.cn (Prof. Zhao Qian)

Fig. S1. The convergence tests of (a) K-mesh and (b) vacuum thickness.

Fig. S2. Electron localization function of monolayer VC₂N₄.

Fig. S3. Evolution of the total energy during 5 ps from AIMD simulation at 500 K; insets show the snapshots of initial and final structures of monolayer VC_2N_4 .

Fig. S4. (a) Band structure of monolayer VC_2N_4 without spin polarization and SOC. (b) Orbital-resolved band structures of monolayer VC_2N_4 with spin polarization and SOC.

Fig. S5. Low-energy electronic bands around K and K' valleys based on the tightbinding models. The orange and blue lines are spin-up and spin-down states, respectively.

Fig. S6. Band structures of monolayer VC₂N₄ with SOC under different strains.

Fig. S7. Berry curvature of VB as a contour map over the 2D BZ for monolayer VC_2N_4 under different strains.