Supporting Information

All green solvent engineering processed perovskite films for

efficient solar cells in high humid atmosphere

Xiaobing Cao^{1, 2*a}, Gengyang Su^{1a}, Lei Hao¹, Jian Zhou¹, Qingguang Zeng¹, Xin He^{1*},

Jinquan Wei³*

1. School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020,

P.R. China

- Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
- State Key Lab of New Ceramics and Fine Processing; Education Ministry Key Laboratory for Advanced Materials Processing Technology; School of Materials Science and Engineering, Tsinghua University, Beijing, China, 100084

*Corresponding Authors. Corresponding Authors. E-mail: <u>caoxb14@tsinghua.org.cn;</u> <u>hexinwyu@126.com; jqwei@tsinghua.edu.cn</u>. Tel: +86-10-62781065.

a: these authors contribute equally to this work.

Figure S1 The comparison of FTIR spectra of different solvent system of TEP+ x % H₂O ($x=0\sim100$). (a) the full spectra; (b) the enlarged spectra.

Figure S2 The full Raman spectra of pure TEP and TEP+50% H₂O

Figure S3 The photograph of perovskite films in the air with high relative humidity (RH=70~80%). The films are prepared without substrate preheating technology, and then annealed at 150 $^{\circ}$ C for 10 min.

Figure S4 (a) low magnification SEM image, (b) photograph of perovskite films prepared from the substrate temperature of 175 $^{\circ}$ C, followed by annealing at 150 $^{\circ}$ C for 10 min.

Figure S5 (a) the unnormalized XRD curves of perovskite films annealed at 300° C for different time; (b) the normalized XRD curves of perovskite films annealed at 300° C for different time.

Figure S6 The cross-sectional SEM image of a PSC, whose light harvest layer of perovskite film is annealed at 150 $^{\circ}$ C for 10 min in the air with high relative humidity of 70~80%.

Figure S7 Calculation of the bandgap (E_g) of perovskite films from IPCE spectra. The E_g can be calculated by the maximum differential value of IPCE.

Samples	τ_1 (ns)	τ_2 (ns)	$A_1(\%)$	A2 (%)	$ au_{ave}$ (ns)			
150 °C/10 min	100.00	443.10	3.52	96.48	443.19			
300 ℃/45s	163.39	715.17	21.40	78.60	682.86			
$\tau_{ave} = (A_1 \tau_1^2 + A_2 \tau_2^2) / (A_1 \tau_1 + A_2 \tau_2)$								

Table S1 The fitting results of TRPL spectra.

Samples	$V_{\rm oc}$ (V)	J_{sc} (mA cm ⁻²)	FF	PCE (%)	HI index
150 °C/10 min- RS	0.955	22.67	0.740	16.02	
150 °C/10 min- FS	0.939	22.66	0.682	14.52	9.36%
300 °C/45s- RS	1.105	23.46	0.766	19.86	
300 °C/45s- FS	1.112	23.45	0.745	19.41	2.27%

 Table S2
 The photovoltaic parameters of champion PSCs annealed at different method.

HI=(PCE_{RS}-PCE_{FS})/PCE_{RS}