Supporting Information

for

Achieving Time-Dependent and Color-Tunable Ultralong Room Temperature Phosphorescence through Sodiation Reconfiguration for Dynamic 5D Information Encryption

Li Ya Liang, ${ }^{\text {a }}$ Ya Ting Gao, ${ }^{\text {a Shuai Chang, }}{ }^{\text {a Jian Lv, }}{ }^{\text {a Bin Bin Chen, }}$ *, a, b and Da Wei Li *, a
${ }^{a}$ Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology \& Dynamic Chemistry, School of Chemistry \& Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
${ }^{b}$ School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China.
* Corresponding author. E-mail: chenbinbin@cuhk.edu.cn (B.B. Chen) and daweili@ecust.edu.cn (D.W. Li).

Materials and methods

Reagent and Apparatus. L-phenylalanine (Phe, 99\%) is received from Energy Chemical Co., Ltd. Aluminum sulfate $\left(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}, 99.99 \%\right)$ is purchased from Adamas-beta Reagent Co., Ltd. Sodium hydroxide $(\mathrm{NaOH}, 99 \%)$ is purchased from Aladdin Reagent Co., Ltd. All reagents are dissolved using 18.2 M $\Omega . \mathrm{cm}$ ultrapure water. Photoluminescence (PL) spectra, phosphorescence (phos.) spectra and phos. lifetimes are determined by a FLS1000 steady state/transient fluorescence spectrometer. Absorption spectra is measured by a Lambda 950 UV-visible-near infrared spectrophotometer. Scanning electron microscopy (SEM) images can be obtained by a Helios G4 UC scanning electron microscope. Powder Xray diffraction (XRD) spectrum is measured by an $18 \mathrm{KW} / \mathrm{D} / \mathrm{max} 2550 \mathrm{VB} / \mathrm{PC}$ rotating X-ray powder diffractometer. Fourier transform infrared (FT-IR) spectra are determined on a Nicolet6700 FT-IR spectrometer. X-ray photoelectron spectroscopy (XPS) spectra are analyzed using an ESCALAB 250Xi X-ray photoelectron spectrometer. Elemental mapping can be obtained by energy dispersive X-ray spectroscopy (EDS) used in combination with a field emission scanning electron microscope.

Synthesis process of Al/Phe-PMs. Aluminum/phenylalanine phosphorescent materials (Al/Phe-PMs) are prepared by a hydrothermal method. In detail, 0.5 mmol of $\mathrm{Phe}(0.083 \mathrm{~g})$ and 4 mmol of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(1.369$ g) are dissolved in 4.0 mL ultrapure water by ultrasonic treatment. The mixing solution is further transferred into a 10 mL screw-neck glass bottle and heated to $200^{\circ} \mathrm{C}$ for 300 min . The obtained products are designated as $\mathrm{Al} / \mathrm{Phe}-\mathrm{PMs}$ for utilization. For large-scale synthesis of $\mathrm{Al} / \mathrm{Phe}-\mathrm{PMs}$, Phe (82.6 g) and $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~kg})$ are mixed with water $(4 \mathrm{~L})$. Then the solution is dispensed in two 4 L beakers and heated at $200^{\circ} \mathrm{C}$ for 17 h , rendering it feasible to achieve large-scale production of $\mathrm{Al} /$ Phe-PMs.

Synthesis of Al/Phe-PMs@NaOH. In order to prepare NaOH-treated Al/Phe-PMs (Al/Phe-PMs@NaOH), 40 mg of $\mathrm{Al} /$ Phe-PMs solid powder is dispersed in 1.0 M NaOH solution (2 mL) through 60 min of ultrasound. Then, $\mathrm{Al} / \mathrm{Phe}-\mathrm{PMs} @ \mathrm{NaOH}$ powder can be formed by heating the mixing solution in a vacuum drying oven at $90^{\circ} \mathrm{C}$ for 15 h . To investigate the effect of the volume and concentration of NaOH solution on the phos. emission of the $\mathrm{Al} / \mathrm{Phe}-\mathrm{PMs} @ \mathrm{NaOH}$, a series of NaOH solutions with different volumes or concentrations are used. When exploring the influence of the volume, the volume of NaOH solution (1.0 M) is $0 \mathrm{~mL}, 1 \mathrm{~mL}, 2 \mathrm{~mL}$, and 3 mL , respectively. When the influence of the concentration is studied, the concentration of NaOH solution (2 mL) is expressed as $0 \mathrm{mM}, 0.1 \mathrm{mM}, 1 \mathrm{mM}, 10 \mathrm{mM}, 0.1 \mathrm{M}$, and 1.0 M , respectively.

Synthesis of Phe@NaOH. A facile thermal polymerization method is used to synthesize NaOH-treated Phe (Phe@NaOH). In detail, 40 mg of Phe is dispersed in 1.0 M NaOH solution (2 mL) through ultrasonic treatment. Next, with the treatment of heating and drying the mixed solution at $90{ }^{\circ} \mathrm{C}$ for 15 h , Phe@NaOH powder is obtained for further utilization.

Figure S1. The phos. lifetimes of the $\mathrm{Al} / \mathrm{Phe}-\mathrm{PMs}$ at different temperatures. EX: 290 nm , EM: 540 nm . Result shows that the phos. lifetimes of the $\mathrm{Al} / \mathrm{Phe}-\mathrm{PMs}$ decrease as the temperature increases.

Figure S2. (a) Phos. emission spectra of Phe powder excited by different excitation wavelengths at room temperature. Result shows that Phe powder has a maximum phos. emission at about 510 nm when excited by 290 nm . (b) Peak fitting of phos. emission peak excited at 290 nm . Delay time: 5 ms .

Figure S3. Structural analysis of $\mathrm{Al} /$ Phe-PMs. (a) High-resolution C1s spectrum, (b) high-resolution A12p spectrum, and (c) high-resolution O1s spectrum of $\mathrm{Al} / \mathrm{Phe}-\mathrm{PMs}$. Results show that many carboxylate groups exist in $\mathrm{Al} /$ Phe-PMs due to the characteristic binding energy of 289.4 eV in high-resolution C 1 s spectrum. High-resolution Al 2 p spectrum further reveals that Al^{3+} ions not only coordinate with carboxyl groups through $\mathrm{Al}-\mathrm{O}$ bonds, but can also coordinate with amino groups through $\mathrm{Al}-\mathrm{N}$ bonds. Moreover, a typical peak located at 534.3 eV corresponding to the σ^{*} transition of $\mathrm{Al}-\mathrm{O}$ bond is found in highresolution O1s spectrum.

Figure S4. 3D phos. spectra of the $\mathrm{Al} /$ Phe-PMs prepared using (a-c) Phe ligands with a purity of 99% from different manufacturers and (d) recrystallized Phe ligands. Results show that there is no significant difference in the phos. spectra of the prepared $\mathrm{Al} /$ Phe-PMs, whether using Phe from different manufacturers or recrystallized Phe. Delay time: 5 ms .

Table S1. The comparison of phos. efficiency of common RTP materials. $\phi_{\text {Phos. }}$ refers to the phos. QYs. $\tau_{\text {Phos. }}$ refers to the phos. lifetime.

RTP materials	$\phi_{\text {Phos. (\%) }}$	$\tau_{\text {Phos. }}(\mathrm{s})$	Ref.
TSP crystals	66.9	0.17	1
CDs-4	47.0	0.63	2
syn-BTCz-doped PVA films	29.8	0.85	3
IbCzA-doped PVA film	19.8	1.81	4
TMA	18.2	0.16	5
Py-BOH-PVA	13.1	0.34	6
CNQDs	10.5	6.47	7
Phe9-B-R	9.4	2.67	8
CT5-0	9.3	1.13	9
DPCz-doped PVA	0.3	1.94	10
A1/Phe-PMs	7.98	1.0153	This work

Figure S5. The 3D phos. spectra of $\mathrm{Al} / \mathrm{Phe}-\mathrm{PMs} @ \mathrm{NaOH}$ prepared by using different volumes of 1.0 M NaOH (from a to d: $0 \mathrm{~mL}, 1 \mathrm{~mL}, 2 \mathrm{~mL}$, and 3 mL). Results show that the phos. emission of the material gradually blueshifts with the increase of the NaOH volume, and reaches a plateau at the volume of 2 mL . Delay time: 5 ms .

Figure S6. The 3D phos. spectra of $\mathrm{Al} / \mathrm{Phe}-\mathrm{PMs} @ \mathrm{NaOH}$ prepared by using different concentrations of NaOH (from a to f: control, $0.1 \mathrm{mM}, 1 \mathrm{mM}, 0.01 \mathrm{M}, 0.1 \mathrm{M}$, and 1.0 M). Results show that the phos. emission of the material blueshifts to 430 nm when the concentration of NaOH is 1.0 M . Volume: 2 mL . Delay time: 5 ms .

Figure S7. Phos. lifetime of Phe@NaOH at room temperature. Result shows that the phos. lifetime of Phe@ NaOH is close to that of $\mathrm{Al} /$ Phe-PMs $@ \mathrm{NaOH}$.

Figure S8. (a) Absorption spectra and (b) the $(\alpha h v)^{2}-h v$ curves of $\mathrm{Al} /$ Phe- PMs and $\mathrm{Al} / \mathrm{Phe}-\mathrm{PMs} @ \mathrm{NaOH}$. Results show that $\mathrm{Al} /$ Phe-PMs have a stronger and wider absorption band from 400 to 800 nm as compared to $\mathrm{Al} / \mathrm{Phe}-\mathrm{PMs} @ \mathrm{NaOH}$, indicates the destruction of rigid configuration caused by NaOH , accompanied by an increase in optical bandgap from 2.27 eV to 3.40 eV .

Table S2. The photophysical rate constants of $\mathrm{Al} /$ Phe-PMs before and after the treatment of NaOH .

	$\phi_{\text {Phos. }}(\%)$	$\tau_{\text {Phos. }}(\mathrm{ms})$	$k_{\mathrm{r}}\left(\mathrm{s}^{-1}\right)$	$k_{\mathrm{nr}}\left(\mathrm{s}^{-1}\right)$
$\mathrm{Al} /$ Phe-PMs	7.98	1015.3	7.86×10^{-2}	0.91
$\mathrm{Al} /$ Phe-PMs $@ \mathrm{NaOH}$	1.22	393.1	3.10×10^{-2}	2.51

The phos. radiative rate constant of $\mathrm{Al} / \mathrm{Phe}-\mathrm{PMs}$ is calculated according to the following equation:

$$
\begin{equation*}
k_{\mathrm{r}}=\phi_{\text {Phos. }} / \tau_{\text {Phos. }} \tag{1}
\end{equation*}
$$

Moreover, the non-radiative rate constant of $\mathrm{Al} / \mathrm{Phe}-\mathrm{PMs}$ is calculated based on the following equation:

$$
\begin{equation*}
k_{\mathrm{nr}}=\left(1-\phi_{\text {Phos. }}\right) / \tau_{\text {Phos }} \tag{2}
\end{equation*}
$$

Wherein, $\phi_{\text {Phos. }}$ refers to the phos. QYs. $\tau_{\text {Phos. }}$ refers to the phos. lifetime. k_{r} refers to the phos. radiative rate constant. k_{nr} refers to the non-radiative rate constant.

Reference:

1. W. Ye, H. Ma, H. Shi, H. Wang, A. Lv, L. Bian, M. Zhang, C. Ma, K. Ling, M. Gu, Y. Mao, X. Yao, C. Gao, K. Shen, W. Jia, J. Zhi, S. Cai, Z. Song, J. Li, Y. Zhang, S. Lu, K. Liu, C. Dong, Q. Wang, Y. Zhou, W. Yao, Y. Zhang, H. Zhang, Z. Zhang, X. Hang, Z. An, X. Liu and W. Huang, Nat. Mater., 2021, 20, 1539-1544.
2. X. Liu, W. Liu, K. Zuo, J. Zheng, M. Wang and X. Liu, ACS Sustainable Chem. Eng., 2023, 11, 1809-1819.
3. Y. Xie, Z. Wang, P. Yu, L. Zhang, Y. Geng and J. Zhao, Adv. Optical Mater., 2023, DOI: 10.1002/adom. 202301188.
4. Y. Yang, Y. Liang, Y. Zheng, J. A. Li, S. Wu, H. Zhang, T. Huang, S. Luo, C. Liu, G. Shi, F. Sun, Z. Chi and B. Xu, Angew. Chem. Int. Ed., 2022, 61, e202201820.
5. H. Liu, W. Ye, Y. Mu, H. Ma, A. Lv, S. Han, H. Shi, J. Li, Z. An, G. Wang and W. Huang, Adv. Mater., 2022, 34, 2107612.
6. D. Li, J. Yang, M. M. Fang, B. Z. Tang and Z. Li, Sci Adv, 2022, 8, eabl8392.
7. B. Han, X. Lei, D. Li, Q. Liu, Y. Chen, J. Wang and G. He, Adv. Optical Mater., 2023, 11, 2202293.
8. Q. Gao, M. Shi, M. Chen, X. Hao, G. Chen, J. Bian, B. Lü, J. Ren and F. Peng, Small, 2023, DOI: 10.1002/smll. 202309131.
9. S. Xu, W. Wang, H. Li, J. Zhang, R. Chen, S. Wang, C. Zheng, G. Xing, C. Song and W. Huang, Nat. Commun., 2020, 11, 4802.
10. Y. Zhang, Y. Su, H. Wu, Z. Wang, C. Wang, Y. Zheng, X. Zheng, L. Gao, Q. Zhou, Y. Yang, X. Chen, C. Yang and Y. Zhao, J. Am. Chem. Soc., 2021, 143, 13675-13685.
