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Materials and methods

Reagent and Apparatus. L-phenylalanine (Phe, 99%) is received from Energy Chemical Co., Ltd. 

Aluminum sulfate (Al2(SO4)3, 99.99%) is purchased from Adamas-beta Reagent Co., Ltd. Sodium 

hydroxide (NaOH, 99%) is purchased from Aladdin Reagent Co., Ltd. All reagents are dissolved using 

18.2 MΩ.cm ultrapure water. Photoluminescence (PL) spectra, phosphorescence (phos.) spectra and phos. 

lifetimes are determined by a FLS1000 steady state/transient fluorescence spectrometer. Absorption 

spectra is measured by a Lambda 950 UV-visible-near infrared spectrophotometer. Scanning electron 

microscopy (SEM) images can be obtained by a Helios G4 UC scanning electron microscope. Powder X-

ray diffraction (XRD) spectrum is measured by an 18KW/D/max2550VB/PC rotating X-ray powder 

diffractometer. Fourier transform infrared (FT-IR) spectra are determined on a Nicolet6700 FT-IR 

spectrometer. X-ray photoelectron spectroscopy (XPS) spectra are analyzed using an ESCALAB 250Xi 

X-ray photoelectron spectrometer. Elemental mapping can be obtained by energy dispersive X-ray 

spectroscopy (EDS) used in combination with a field emission scanning electron microscope. 

Synthesis process of Al/Phe-PMs. Aluminum/phenylalanine phosphorescent materials (Al/Phe-PMs) are 

prepared by a hydrothermal method. In detail, 0.5 mmol of Phe (0.083 g) and 4 mmol of Al2(SO4)3 (1.369 

g) are dissolved in 4.0 mL ultrapure water by ultrasonic treatment. The mixing solution is further 

transferred into a 10 mL screw-neck glass bottle and heated to 200 oC for 300 min. The obtained products 

are designated as Al/Phe-PMs for utilization. For large-scale synthesis of Al/Phe-PMs, Phe (82.6 g) and 

Al2(SO4)318H2O (2 kg) are mixed with water (4 L). Then the solution is dispensed in two 4 L beakers and 

heated at 200 oC for 17 h, rendering it feasible to achieve large-scale production of Al/Phe-PMs.

Synthesis of Al/Phe-PMs@NaOH. In order to prepare NaOH-treated Al/Phe-PMs (Al/Phe-PMs@NaOH), 

40 mg of Al/Phe-PMs solid powder is dispersed in 1.0 M NaOH solution (2 mL) through 60 min of 

ultrasound. Then, Al/Phe-PMs@NaOH powder can be formed by heating the mixing solution in a vacuum 

drying oven at 90 ℃ for 15 h. To investigate the effect of the volume and concentration of NaOH solution 

on the phos. emission of the Al/Phe-PMs@NaOH, a series of NaOH solutions with different volumes or 

concentrations are used. When exploring the influence of the volume, the volume of NaOH solution (1.0 

M) is 0 mL, 1 mL, 2 mL, and 3 mL, respectively. When the influence of the concentration is studied, the 

concentration of NaOH solution (2 mL) is expressed as 0 mM, 0.1 mM, 1 mM, 10 mM, 0.1 M, and 1.0 M, 

respectively.

Synthesis of Phe@NaOH. A facile thermal polymerization method is used to synthesize NaOH-treated 

Phe (Phe@NaOH). In detail, 40 mg of Phe is dispersed in 1.0 M NaOH solution (2 mL) through ultrasonic 

treatment. Next, with the treatment of heating and drying the mixed solution at 90 oC for 15 h, 

Phe@NaOH powder is obtained for further utilization.



Figure S1. The phos. lifetimes of the Al/Phe-PMs at different temperatures. EX: 290 nm, EM: 540 nm. 

Result shows that the phos. lifetimes of the Al/Phe-PMs decrease as the temperature increases.

Figure S2. (a) Phos. emission spectra of Phe powder excited by different excitation wavelengths at room 

temperature. Result shows that Phe powder has a maximum phos. emission at about 510 nm when excited 

by 290 nm. (b) Peak fitting of phos. emission peak excited at 290 nm. Delay time: 5 ms.

Figure S3. Structural analysis of Al/Phe-PMs. (a) High-resolution C1s spectrum, (b) high-resolution Al2p 

spectrum, and (c) high-resolution O1s spectrum of Al/Phe-PMs. Results show that many carboxylate 

groups exist in Al/Phe-PMs due to the characteristic binding energy of 289.4 eV in high-resolution C1s 

spectrum. High-resolution Al2p spectrum further reveals that Al3+ ions not only coordinate with carboxyl 

groups through AlO bonds, but can also coordinate with amino groups through AlN bonds. Moreover, a 

typical peak located at 534.3 eV corresponding to the * transition of AlO bond is found in high-

resolution O1s spectrum.



Figure S4. 3D phos. spectra of the Al/Phe-PMs prepared using (a-c) Phe ligands with a purity of 99% 

from different manufacturers and (d) recrystallized Phe ligands. Results show that there is no significant 

difference in the phos. spectra of the prepared Al/Phe-PMs, whether using Phe from different 

manufacturers or recrystallized Phe. Delay time: 5 ms.

Table S1. The comparison of phos. efficiency of common RTP materials.  Phos. refers to the phos. QYs. 

Phos. refers to the phos. lifetime.

RTP materials Phos. (%) Phos. (s) Ref. 

TSP crystals 66.9 0.17 1

CDs-4 47.0 0.63 2

syn-BTCz-doped PVA films 29.8 0.85 3

IbCzA-doped PVA film 19.8 1.81 4

TMA 18.2 0.16 5

Py-BOH-PVA 13.1 0.34 6

CNQDs 10.5 6.47 7

Phe9-B-R 9.4 2.67 8

CT5-0 9.3 1.13 9

DPCz-doped PVA 0.3 1.94 10

Al/Phe-PMs 7.98 1.0153 This work



Figure S5. The 3D phos. spectra of Al/Phe-PMs@NaOH prepared by using different volumes of 1.0 M 

NaOH (from a to d: 0 mL, 1 mL, 2 mL, and 3 mL). Results show that the phos. emission of the material 

gradually blueshifts with the increase of the NaOH volume, and reaches a plateau at the volume of 2 mL. 

Delay time: 5 ms.

Figure S6. The 3D phos. spectra of Al/Phe-PMs@NaOH prepared by using different concentrations of 

NaOH (from a to f: control, 0.1 mM, 1 mM, 0.01 M, 0.1 M, and 1.0 M). Results show that the phos. 

emission of the material blueshifts to 430 nm when the concentration of NaOH is 1.0 M. Volume: 2 mL. 

Delay time: 5 ms.



Figure S7. Phos. lifetime of Phe@NaOH at room temperature. Result shows that the phos. lifetime of 

Phe@NaOH is close to that of Al/Phe-PMs@NaOH.

Figure S8. (a) Absorption spectra and (b) the (αhν)2−hν curves of Al/Phe-PMs and Al/Phe-PMs@NaOH. 

Results show that Al/Phe-PMs have a stronger and wider absorption band from 400 to 800 nm as 

compared to Al/Phe-PMs@NaOH, indicates the destruction of rigid configuration caused by NaOH, 

accompanied by an increase in optical bandgap from 2.27 eV to 3.40 eV. 

Table S2. The photophysical rate constants of Al/Phe-PMs before and after the treatment of NaOH.

Phos. (%) Phos. (ms) kr (s1) knr (s1)

Al/Phe-PMs 7.98 1015.3 7.86  102 0.91

Al/Phe-PMs@NaOH 1.22 393.1 3.10  102 2.51

The phos. radiative rate constant of Al/Phe-PMs is calculated according to the following equation:

kr = Phos. / Phos.                                 (1)

Moreover, the non-radiative rate constant of Al/Phe-PMs is calculated based on the following equation:

knr = (1  Phos.) / Phos.                              (2)

Wherein, Phos. refers to the phos. QYs. Phos. refers to the phos. lifetime. kr refers to the phos. radiative 

rate constant. knr refers to the non-radiative rate constant.
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