Electronic Supplementary Information

Two dyes-encapsulated triple-emitting naphthalene-based Zr-MOFs for tunable

white-light emission and dual mode detection of inorganic ions

Yang Chen^a, Guang Yang^a, Xin Liu^c, Dashu Chen^{a,*}, Hongzhu Xing^c, and Liu Yang^{b,*}

^aCollege of Chemistry, Chemical Engineering and Resource Utilization, Northeast

Forestry University, No. 26 Hexing Road, Harbin, 150040, China

^bDepartment of Chemistry, College of Arts and Sciences, Northeast Agricultural

University, No. 600 Changjiang Road, Harbin, 150030, China

^cProvincial Key Laboratory of Advanced Energy Materials, College of Chemistry,

Northeast Normal University, No. 5268 Renmin Street, Changchun, 130024, China

E-mail address: chends410@nenu.edu.cn, yangliu@neau.edu.cn.

Chemicals and Instruments.

Zirconium(IV) chloride (ZrCl₄, 98%) and 2,6-naphthalenedicarboxylic acid (H₂NDC) were purchased from Aladdin and TCI, and rhodamine 6G (Rh6G) and 9,10bis(phenylethynyl)anthracene (BPEA, 97%) were purchased from Rhawn and Innochem. N,N-dimethylformamide (DMF) and anhydrous ethanol (C2H6O) were purchased from Fuyu. Acetic acid (C₂H₄O₂, 99.5%) was purchased from Innochem. All inorganic metal salts were purchased from Kermel. All commercial chemicals were analytical purity and used without further purification. The UV-vis absorption spectra of liquid samples were obtained by TU-1901 UV-vis spectrophotometer. Powder X-ray diffraction (PXRD) measurements were obtained from the TD-3500 diffractometer with a 2θ range from 3° to 40° at a scan speed of 5° min⁻¹. The fluorescence spectra were acquired at room temperature using the Shimadzu RF-6000 fluorescence spectrophotometer. Fluorescence lifetime were determined by the Ouanta Master 8000 fluorescence spectrometer at room temperature. Thermogravimetric analysis (TGA) data were acquired from the PerkinElmer TGA-8000 thermogravimetric analyzer over a temperature range of room temperature to 800 °C. The morphology of samples was characterized by EM-30Plus benchtop scanning electron microscopy. N2 sorption measurements were measured at the liquid nitrogen temperature, using a Micrometritics ASAP 2020 system.

Fig. S1 The pristine DUT-52 before and after soaked in 4 mL BPEA and Rh6G solution (6.275 mg mL⁻¹ and 11.9 mg mL⁻¹, DMF solvent) at room temperature, respectively.

Fig. S2 The UV-vis absorption spectra of decomposition solution of dut-52 treated by BPEA/Rh6G.

Fig. S3 The UV-vis absorption spectra of the supernatant of soaked DUT-52, B@D,R@D, and six B&R@D composites DMF solution (8 mL, 48 h).

Fig. S4 The pristine DUT-52 before and after reacted with BPEA and Rh6G solution (6.275 mg mL⁻¹ and 11.9 mg mL⁻¹, DMF solvent) at 100 °C, respectively.

Fig. S5 (a, b) Chemical structures and molecular sizes of 9,10bis(phenylethynyl)anthracene (BPEA) and rhodamine 6G (Rh6G). (c) Window size of DUT-52 with *fcu* topology.

Fig. S6 (a) The standard absorbance curve of BPEA acidic solution (square) and the absorbance of acidic hydrolysis solution for BPEA&Rh6G@DUT-52 composites and DUT-52 in control experiments (solvothermal treatment by BPEA solution) (other shaped points). (b) The standard absorbance curve of Rh6G acidic solution (square) and the absorbance of acidic hydrolysis solution for BPEA&Rh6G@DUT-52 composites and DUT-52 in control experiments (solvothermal treatment by Rh6G solution) (other shaped points).

Fig. S7 The TG curves of as-synthesized DUT-52, BPEA@DUT-52, Rh6G@DUT-52 and six BPEA&Rh6G@DUT-52 composites.

The acidic hydrolysis procedure of BPEA&Rh6G@DUT-52 composites or DUT-52 in control experiments.

15 mg BPEA&Rh6G@DUT-52 composites or DUT-52 in control experiments were dispersed in 5 mL acidic solution of DMF (V_{DMF} : $V_{HCl} = 4 : 1$) and heated at 60 °C for 2 hours to completely hydrolyse MOF composites and release BPEA and Rh6G molecules. The concentrations of BPEA and Rh6G solutions of acidic hydrolysis solutions were calculated by the standard curves of BPEA and Rh6G (y = 61.081x - 0.00046, y = 128.27x - 0.0151), respectively. The loaded mole fractions of BPEA and Rh6G in samples are represented as X_{BPEA} and X_{Rh6G} .

Table S1 The loaded mole fractions of BPEA and Rh6G in different samples

Samples	B&R@D1	B&R@D2	B&R@D3	B&R@D4	B&R@D5	B&R@D6	B@D	R@D	D&B	D&R
ρ _{BPEA} / g mL ⁻¹	0.516±0.002	0.844±0.003	0.762±0.002	1.090±0.006	0.729±0.004	1.662±0.005	4.085±0.006		0.434±0.002	
$\rho_{\textrm{Rh6G}}/g\textrm{mL}^{\textrm{-1}}$	0.523±0.001	0.476±0.002	1.063±0.004	0.874±0.005	1.521±0.005	1.778±0.003		1.949±0.004		0.429±0.002
m _{samples} / g	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015		
M _{BPEA} / g mol ⁻¹	378	378	378	378	378	378	378		378	
M _{Rh6G} / g mol ⁻¹	479	479	479	479	479	479		479		479
M _{samples} / g mol ⁻¹	2187	2175	2254	2340	2254	2497	2234	2448	2240	2240
X _{BPEA} / %	0.10%	0.16%	0.15%	0.22%	0.14%	0.37%	0.8%		0.09%	
X _{Rh6G} / %	0.08%	0.07%	0.17%	0.14%	0.24%	0.31%		0.33%		0.07%

The calculations of ρ_{Rh6G} and ρ_{BPEA} are based on standard absorbance curves for Rh6G and BPEA acidic solutions, respectively (Fig. S6).

Calculation of $M_{samples}$ is based on TGA curves by using Zr_6O_{12} {six ZrO_2 vs. [$Zr_6O_4(OH)_4L_6$]_n} as residue (Fig. S7).

 $X_{BPEA} = n_{BPEA} / n_{samples} = (m_{BPEA} / M_{BPEA}) / (m_{samples} / M_{samples}).$

 $X_{Rh6G} = n_{Rh6G} / n_{samples} = (m_{Rh6G} / M_{Rh6G}) / (m_{samples} / M_{samples}).$

Interpretation: The formula is to calculate the molar percentage of dyes in the composites (B&R@D, B@D, R@D). X = the molar percentage of dyes in the composites (B&R@D, B@D, R@D); n = amount of substance; m = mass; M = molar mass; BPEA = 9,10-bis (phenylethynyl)anthracene; Rh6G = rhodamine 6G; samples = MOF composites.

Fig. S8 N₂ adsorption-desorption isotherms of DUT-52 and B&R@D6 at 77 K.

Fig. S9 Fluorescence spectra of a mixed solution of BPEA and Rh6G (6.275 mg mL⁻¹ and 11.9 mg mL⁻¹, DMF solvent) before and after a solvothermal reaction.

Fig. S10 (a) Fluorescence response of DUT-52 DMF suspension (2.4 mL) by gradually adding BPEA DMF solution (0.1 g L⁻¹). (b) Fluorescence spectra of the controlled experiments. (c) Fluorescence response of DUT-52 ethanol suspension (2.4 mL) by gradually adding Rh6G ethanol solution of (0.1 g L⁻¹). (d) Fluorescence spectra of the controlled experiments.

Fig. S11 (a) Fluorescent spectra of B&R@D6 composites at different solvent ($\lambda_{ex} = 320 \text{ nm}$). (b) Normalized fluorescent spectra of B&R@D6 composites at different solvent ($\lambda_{ex} = 320 \text{ nm}$). (c) The corresponding CIE coordinates. (d) Optical photographs of B&R@D6 composites at different solvent ($\lambda_{ex} = 365 \text{ nm}$).

	MOF	Analyte	K _{sv} (М ⁻¹)	LOD (M)	Sensing method	Ref.
1	{[ZnL _{0.5} (4,4'-bbib)]·3DMF·3H ₂ O} _n	Fe ³⁺	2.43×10²	-	quenching	[1]
2	{[Zn(ATA)(L)]·H ₂ O} _n	Fe ³⁺	0.557×10³	3.76×10⁻⁵	quenching and colorimetry	[2]
3	$[Zr_{6}O_{4}(OH)_{8}(H_{2}O)_{4}(L^{1})_{2}]\cdotS$	Fe ³⁺	2.17×10 ³	3.8×10-⁵	quenching	[3]
4	[Cd(2-bpeb)(sdba)]	Fe ³⁺	2.86×10 ³	-	quenching	[4]
5	Eu(btc)	Fe ³⁺	2.9×10³	3.13×10⁻⁵	quenching	[5]
6	{[Eu(dpc)(2H₂O)]·(Hbibp)₀.₅}'n	Fe ³⁺	3.34×10 ³	2.89×10⁻⁵	quenching	[6]
7	BPEA&Rh6G@DUT-52	Fe ³⁺	3.09×10 ³	2.8×10 ⁻⁶	quenching and colorimetry	This work

 Table S2 Comparison of BPEA&Rh6G@DUT-52 sensor with other MOF fluorescent sensors for the detection of Fe³⁺ ions

Fig. S12 PXRD patterns of the recycled B&R@D6 composite.

	MOF	Analyte	K _{sv} (M⁻¹)	LOD (M)	Sensing method	Ref.
1	Eu³*@UiO-66-CA	Cr ₂ O ₇ ²⁻	4.698×10⁵	8.5×10⁵	quenching	[7]
2	SQDs@UiO-66-NH₂	Cr ₂ O ₇ ²⁻	3.12×10⁴	0.16×10⁻⁵	quenching and colorimetry	[8]
3	[Cd₃(cpota)₂(phen)₃]₅·5nH₂O	Cr ₂ O ₇ ²⁻	1.21×10⁴	0.37×10⁻⁵	quenching	[9]
4	[Zn(dptz)(BDC) (H ₂ O)] _n	Cr ₂ O ₇ ²⁻	1.26×10⁴	0.36×10⁻⁵	quenching	[10]
5	[Zn ₂ (tpeb)(bpdc) ₂]·0.5DMA·4H ₂ O	Cr ₂ O ₇ ²⁻	1.122×10⁴	1.04×10 ⁻⁶	quenching	[11]
6	Cd(II)-MOF	Cr ₂ O ₇ ²⁻	2.45×10⁴	4.88 ppb	quenching	[12]
7	BPEA&Rh6G@DUT-52	Cr ₂ O ₇ ²⁻	4.68×10⁵	18.5×10 ^{.9}	quenching and colorimetry	This work

Table S3 Comparison of BPEA&Rh6G@DUT-52 sensor with other MOF fluorescentsensors for the detection of $Cr_2O_7^{2-}$ ions

Fig. S13 PXRD patterns of the recycled B&R@D6 composite.

Fig. S14 The UV-vis absorption spectra of 17 cations in aqueous solution (0.5 mM).

Fig. S15 The UV-vis absorption spectra of 16 anions in aqueous solution (0.1 mM).

Fig. S16 Absorption spectra of Fe³⁺ (0.5 mM), Cr₂O₇²⁻ (0.1 mM) and normalized emission spectra of DUT-52 in the solid state.

Fig. S17 Adsorption tests of B&R@D6 composites toward (a) Fe³⁺ (0.5 mM) and (b)

 $Cr_2O_7^{2-}$ (0.1 mM) in sensing process.

Fig. S18 Normalized of emission spectra of DUT-52 in solid state (black) and absorption spectra of MV²⁺ aqueous solution (red, 0.01 M).

Fig. S19 Fluorescence response of DUT-52 aqueous suspension by adding MV²⁺ aqueous solution (0.01 M).

Fig. S20 Luminescence decay curves of DUT-52 aqueous suspension and MV²⁺ aqueous solution (0.01M).

Sample	Spiked (µM)	Found (µM)	Recovery (%)	RSD (%) (n = 3)
Songhua River (China. Harbin)	25.00	25.38±0.09	101.5	0.34
	50.00	52.30±0.15	104.6	0.29
	75.00	78.53±0.08	104.7	0.36
Majiagou Lake (China. Harbin)	25.00	26.98±0.05	107.9	0.19
	50.00	56.25±0.15	112.5	0.27
	75.00	85.58±0.06	114.1	0.07
Tap water for Northeast Forestry	25.00	25.43±0.05	101.7	0.18
University campus (China. Harbin)	50.00	52.40±0.09	104.8	0.17
	75.00	79.20±0.04	105.6	0.36

Table S4 Detection of Fe³⁺ concentration in actual water samples

Sample	Spiked (µM)	Found (µM)	Recovery (%)	RSD (%) (n = 3)
Songhua River (China. Harbin)	5.00	5.02±0.02	100.3	0.39
	10.00	9.71±0.02	97.1	0.21
	15.00	14.13±0.02	94.2	0.11
Majiagou Lake (China. Harbin)	5.00	5.01±0.01	100.1	0.12
	10.00	8.86±0.02	88.6	0.29
	15.00	13.02±0.01	86.8	0.06
Tap water for Northeast Forestry	5.00	4.70±0.01	94.0	0.21
University campus (China. Harbin)	10.00	9.26±0.03	92.6	0.37
	15.00	13.98±0.05	93.2	0.33

Table S5 Detection of $Cr_2O_7^{2-}$ concentration in actual water samples

References

- [1] H.N. Wu, L.L. Gao, J. Zhang, L.J. Zhai, T. Gao, X.Y. Niu and T.P. Hu, J. Mol. Struct., 2020, 1219, 128613.
- [2] B. Parmar, Y. Rachuri, K.K. Bisht and E. Suresh, *Inorg. Chem.*, 2017, 56, 10939-10949.
- [3] B. Wang, Q. Yang, C. Cuo, Y.X. Sun, L.-H. Xie and J.-R. Li, ACS Appl. Mater. Interfaces, 2017, 9, 10286-10295.
- [4] K. Chen, R. Li,Y.-Y. Peng, Z.-Q. Cai, Z.-Y. Hua, X.-D. Zhang, C. Redshaw and Y. Zhao, *Inorg. Chem. Commun.*, 2020, **121**, 108259.
- [5] J.L. Peng, W. Zhou, H.P. Ding, H.H. Du and S.J.J. Li, *J. Rare Earths*, 2021, **39**, 446-452.
- [6] Y. Du, H.Y. Yang, R.J. Liu, C.Y. Shao and L.R. Yang, *Dalton. T.*, 2020, 49, 13003-13016.
- [7] Y. Fan, X.Q. Sun, W.Y. Zhang and J.C. Liu, *Colloids Surfaces A.*, 2023, 669, 131513.
- [8] Y.Q. Zhang, J.X. Liu, X.H. Wu, W.Q. Tao and Z. Li, *Anal. Chim. Acta.*, 2020, 1131, 68-79.
- [9] S.D. Li, L.P. Lu, M.L. Zhu, C.X. Yuan and S.S. Feng, Sens. Actuators B Chem., 2018, 258, 970-980.
- [10] J.-C. Yin, N. Li, B.-B. Qian, M.-H. Yu, Z. Chang and X.-H. Bu, J. Coord. Chem., 2020, 73, 2718-2727.
- [11] B.B. Rath and J.J. Vittal, Inorg. Chem., 2020, 59, 8818-8826.

[12] L.-H. Chen, X.-B. Cai, Q. Li, B.-B. Guan, T.-H. Liu, D. Li, Z.-Q. Wu and W. Zhu, J. Solid State Chem., 2021, 302, 122416.