Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting information

Fast, high chromatic, electrically responsive photonic crystal inks for displays

Dong Wang^{a, b, c}, Xiaohui Sun^{a, b}, Wei Wu^{a, b}, Mang Li^{a,b}, Xueying Zhao^{a, b}, Huiqi Ren^c, Bo Wang^{a, b},

Jingfang Li^d, Xuyang Zhang^{a, b, *}, Guohua Wu^{a, b, e, *}, Xiangwei Wang^{a, b, *}

^a College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China

^b Qingdao Innovation and Development Center of Harbin Engineering University, Qingdao 266000,

China

^c Defense Engineering Institute, Academy of Military Sciences, People's Liberation Army of China, Luoyang 471023, China

^d School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

^e The Key Laboratory of Functional Molecular Solids, Ministry of Education, China

*Correspondence to: X. Zhang (xuyangz@hrbeu.edu.cn), G. Wu (ghwu@hrbeu.edu.cn) and X. Wang (wangxiangwei@hrbeu.edu.cn)

Particles ^a	d _p (nm)	f _p (%)	Solvent	E(10 ⁴ V/m)	U(V)	Thickness(µm)	Time(s)
PMMA-co-PS ^{S1}	137	/	H ₂ O	2.50	2.5	100	80
SiO ₂ ^{S2}	120	10	PCb	1.25	2.5	200	60
PS ^{S3}	138	/	H_2O	/	AC	100	9
$Fe_3O_4@C^{S4}$	130	18	PCb	2.70	2.7	100	60
SiO ₂ ^{S5}	200	20	PCb	2.50	2.5	100	20
SiO ₂ ^{S6}	171	18	aniline	1.00	1.0	100	10
SiO ₂	189	25	PCb	1.25	2.5	200	5

 Table S1 Comparison of the various ERPCs in literature works and this work: the chemical composition, the working electric field, and the corresponding required time to shift 35nm from the initial state.

Note^a: These f_p values referred to the weight percentages of colloidal particles, and the data in the table corresponds to an electric field of 1.00-2.70*10⁴ V/m. Some particles in the literature can achieve faster response times under high electric field.

Sample ^b	SiO ₂ (%)	$SiO_2(\mu L)$	PC (µL)	Black (%)
А	15.0	30.0	170.0	0
В	20.0	40.0	160.0	0
С	25.0	50.0	150.0	0
D	30.0	60.0	140.0	0
Е	25.0	50.0	150.0	0.025
F	25.0	50.0	150.0	0.050
G	25.0	50.0	150.0	0.100

Table S2 The recipes of the SiO_2 based liquid photonic crystals.

Note^b: The density of SiO₂ microspheres is 2.0 g/cm³, the density of ethanol is 0. 79 g/cm³, Black (%) refers to the mass percentage of black substance in SiO₂

Fig. S1. SEM images of ACNTs.

Fig. S2. Optical images of suspensions of four black substances (ACB, ACNTs, PPy and MXene) with mass fraction of 0.01% in ethanol.

Fig. S3. Optical images of SiO_2 based liquid photonic crystals (LPCs) with different contents of ACNTs.

Fig. S4. (a) Conductive spectra of SiO₂ based LPCs with different ACNTs additions; (b) relative dielectric constant spectra of SiO₂ based LPCs with different ACNTs additions.

Fig. S5. Reflection spectra of SiO₂ based ERPCs with different SDBS concentration as the electric field increases from 0 to 3.5 V: (a) 0 g/L, (b) 0.125 g/L, (c) 0.250 g/L, (d) 0.500 g/L, (e) 1.000 g/L; (f) the reflection wavelength of SiO₂ based ERPCs with SDBS as the electric field increases from 0 to 3.5 V.

Fig. S6. The reflection wavelength changes of SiO_2 based ERPCs with SDBS: when electric voltages of 3.0 V, 4.0 V and 6.0 V are applied (yellow dashed line as reference wavelength for comparison).

References

- S1. M. G. Han, C. J. Heo, C. G. Shin, H. S. Shim, J. W. Kim, Y. W. Jin and S. Y. Lee, J. Mater. Chem. C, 2013, 1, 5791-5798.
- Y. X. Luo, J. F. Zhang, A. H. Sun, C. Y. Chu, S. Zhou, J. J. Guo and G. J. Xu, Adv. Mater. Res. 2014, 924, 158-165.
- S3. M. G. Han, C. J. Heo, H. Shim, C. G. Shin, S. J. Lim, J. W. Kim, Y. W. Jin and S. Lee, *Adv. Opt. Mater.*, 2014, **2**, 535-541.
- S4. H. Y. Lee, S. H. Kim, H. N. Lee, K. H. Park, Y. S. Kim and G. R. Yi, *Rsc Adv.*, 2016, **6**, 100167-100173.
- S5. Y. Ren, Y. Guo, Y. Cheng, Y. Chu, Y. Fang, Y. Liu, J. Hou and Z. Liu, *Optical Materials*, 2022, **129**, 112508.
- S6. G. Bao, W. Yu, Q. Fu and J. Ge, J. Mater. Chem. C, 2023, 11(10) 3513-3520.