Supporting Information

High efficiency, low efficiency roll-off
 fluorescence/phosphorescence hybrid white organic light-emitting diodes based on AIEgens with hot exciton property by strategically managing triplet excitons

hat-CN

TPB-AC

TAPC

$\operatorname{Ir}(\text { tptpy })_{2}(\mathbf{a c a c})$

TCTA

$\mathbf{I r}(\mathbf{p p y})_{2}(\mathbf{a c a c})$

BmPyPB

RD071

Figure S 1. Molecular structures of the used organic materials in this study.

Figure S 2 Absorption spectra of TPB-AC and organe/green/red dopants and PL spectra of DMPPP and TPB-AC and green/organe dopants.

Figure S 3. Normalized EL spectra of TPB-AC, $5 \mathrm{wt} \% \operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{acac}), 5$ $\mathrm{wt} \% \operatorname{Ir}(\text { tptpy })_{2}(\mathrm{acac})$ and $3 \mathrm{wt} \%$ RD071 doped TPB-AC-based devices.

Figure S 4. Summary of the measured EL spectra of devices W1D0, 2, 5, $8,11,14,17$, and 20 at the current density of $10 \mathrm{~mA} \mathrm{~cm}^{-2}$. The measured and fitted spectra of device (a) W1D0, (b) W1D2, (c) W1D5, (d) W1D8, (e) W1D11, (f) W1D14, (g) W1D17, and (h) W1D20 at the current density of $10 \mathrm{~mA} \mathrm{~cm}^{-2}$.

Figure S 5. EL performances of devices W1-W3. (a) EQE-luminance (EQE-L) characteristics. (b) Power efficiency-current efficiencyluminance (PE-CE-L) characteristics. (c) Current density-luminancevoltage (J-V-L) characteristics. (d) Normalized EL spectra at the luminance of $10000 \mathrm{~cd} \mathrm{~m}^{-2}$.

Figure S 6. Lifetime curves of devices W1 and W3 at the current density of $10 \mathrm{~mA} \mathrm{~cm}^{-2}$.

Figure S 7. EL spectra of device W5-W8 at different luminance. (a)device W5, (b) device W6, (c) device W7 from $1600 \mathrm{~cd} \mathrm{~m}^{-2}$ to $20000 \mathrm{~cd} \mathrm{~m}^{-2}$, and (d) device W8.

Table S 1. Summary of the EL performance parameters of the fabricated hybrid WOLEDs.

Device	$V_{\text {on }}$ (V)	EQE $_{\text {max }}$ (\%)	$\begin{gathered} \text { EQE }_{1000} \\ (\%) \end{gathered}$	$\begin{gathered} \mathrm{PE}_{\max } \\ \left(\operatorname{lm} \mathbf{W}^{-1}\right) \end{gathered}$	$\begin{aligned} & C E_{\max } \\ & \left(\mathrm{cd} \mathrm{~A}^{-1}\right) \end{aligned}$	$\begin{gathered} \mathbf{L}_{\max } \\ \left(\mathbf{c d} \mathbf{m}^{-2}\right) \end{gathered}$	$\begin{aligned} & \text { CRI } \\ & (6 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { CIE } \\ & (6 \mathrm{~V}) \end{aligned}$
W1	2.6	18.9	15.7	73.15	60.87	66940	45	(0.42,0.43)
W2	2.6	21.2	18.7	82.43	68.25	72750	46	(0.41, 0.43)
W3	2.6	22.0	19.5	84.89	70.29	72900	46	(0.41, 0.43$)$
W4	2.6	23.2	21.1	78.70	70.20	68953	47	(0.41, 0.43$)$
W5	2.6	21.5	19.3	49.10	46.51	56970	86	(0.42,0.39)
W6	2.6	21.8	19.4	48.01	45.62	54110	87	(0.42,0.40)
W7	2.6	21.4	18.7	45.92	43.60	55440	86	(0.43,0.40)
W8	2.6	24.9	21.7	51.94	49.68	58210	87	(0.44,0.40)

