Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

< Electronic Supporting Information>

Optical limiting effects of 1,10-phenanthroline functionalized

heterometallic Sn-Ti oxo clusters with distinct $\pi \cdots \pi$ interactions

Hui-Fang Zhao,^{a,b} Wei-Zhou Chen,^{a,b} San-Tai Wang,^b Shumei Chen,^{*a} Jian Zhang^b and Lei Zhang^{*b,c}

^{*a*} College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China. E-mail: <u>csm@fzu.edu.cn</u>

^b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

^c Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China. E-mail: <u>zhanglei3915@nankai.edu.cn</u>

Content

1. Single-crystal X-ray diffraction	S2
2. Bond valence sum calculations	
3. Additional structural pictures	
4. Powder-XRD patterns	S11
5. The energy dispersive X-ray spectroscopy (EDS) spectra	S12
6. Thermogravimetrical analysis (TG)	S13
7. IR spectra	
8. XPS spectra	S15
9. The NLO Property	S16

1. Single-crystal X-ray diffraction

Compound	TOC-61	TOC-62	TOC-63		
Cravetal formula	$C_{130}H_{120}Cl_8N_{18}O_{38}Sn_4$	$C_{132}H_{132}Cl_8N_{16}O_{38}Sn_4$	$C_{117}H_{123}Cl_9N_{12}O_{53}Sn_7$		
Crystal formula	Ti ₁₂	Ti ₁₂	Ti ₁₄		
Formula weight	3875.59	3883.69	4365.75		
Temperature/K	293(2)	100.0(3)	100.0(3)		
Crystal system	triclinic	monoclinic	monoclinic		
Space group	P-1	P2/n	$P2_1/c$		
a/Å	15.5760(3)	18.3926(3)	19.2993(3)		
b/Å	16.6681(3)	19.1341(4)	30.2530(5)		
c/Å	18.5243(4)	25.1686(5)	30.1640(4)		
$\alpha/^{\circ}$	105.428(2)	90	90		
β/°	100.263(2)	94.912(2)	101.3500(10)		
$\gamma/^{\circ}$	108.298(2)	90	90		
Volume/Å ³	4217.84(16)	8825.0(3)	17267.2(5)		
Z	1	2	4		
$\rho_{calc}g/cm^3$	1.526	1.462	1.679		
µ/mm ⁻¹	7.435	7.105	10.212		
F(000)	1930.0	3880	8576		
Crystal size/mm ³	$0.002 \times 0.001 \times 0.001$	$0.003 \times 0.002 \times 0.001$	$0.002 \times 0.001 \times 0.001$		
Dediction	micro-focus metaljet	micro-focus metaljet	micro-focus metaljet		
Kaulation	$(\lambda = 1.3405)$	$(\lambda = 1.3405)$	$(\lambda = 1.3405)$		
2Θ range for data collection/°	4.49 to 120.2	4.014 to 120.35	4.06 to 120.272		
Inday ranges	-17 \leq h \leq 20, -21 \leq k \leq	$\text{-}21 \leq h \leq 23, \text{-}24 \leq k \leq$	-24 \leq h \leq 23, -38 \leq k \leq		
Index Tanges	21, $-23 \le l \le 23$	24, $-32 \le l \le 30$	38, $-35 \le l \le 38$		
Reflections collected	62685	67803	127140		
Independent	18752 [$R_{int} = 0.0461$,	19507 [$R_{int} = 0.0949$,	$37982 \ [R_{int} = 0.0928,$		
reflections	$R_{\text{sigma}} = 0.0547]$	$R_{\text{sigma}} = 0.0666]$	$R_{\text{sigma}} = 0.0850]$		
Data/restraints/parame ters	18752/42/961	19507/126/953	37982/2362/1923		
Goodness-of-fit on F ²	1.093	1.085	1.023		
Final R indexes [I>=2σ	$R_1 = 0.0636, WR_2 =$	$R_1 = 0.1040, WR_2 =$	$R_1 = 0.0958, WR_2 =$		
(I)]	0.2110	0.2967	0.2397		
Final R indexes [all	$R_1 = 0.0758, WR_2 =$	$R_1 = 0.1361, WR_2 =$	$R_1 = 0.1369, WR_2 =$		
data]	0.2279	0.3273	0.2688		
Largest diff. peak/hole / e Å ⁻³	2.98/-1.26	2.42/-1.39	6.20/-1.59		

 Table S1 Crystal data and structure refinement for TOC-61, TOC-62 and TOC-63.

(3)
(3)
(4)
(4)
(4)
(5)
(4)
(3)
(4)
(3)
(4)
(4)

Table S2 Selected bond lengths (Å) for TOC-61.

Table S3 Selected bond lengths (Å) for TOC-62.

Ti1-O4	1.851(6)	Ti2-O2	2.059(7)	Ti3-O8	1.809(6)
Ti1-O6	1.879(5)	Ti2-O11	1.888(6)	Ti3-O11	1.814(7)
Ti1-O7	2.061(6)	Ti2-O12	1.825(6)	Ti3-O13	2.091(6)
Ti1-08	1.822(6)	Ti2-O16 ¹	1.874(7)	Ti3-O15	1.838(6)
Ti1-O10	2.055(5)	Ti2-O17	2.094(7)	Ti3-N2	2.217(9)
Ti1-O14	2.111(6)	Ti2-O11	2.093(7)	Ti3-N7	2.275(8)
Ti4-O19 ¹	1.824(5)	Ti5-O3	2.090(6)	Ti6-O19	1.821(5)
Ti4-O4	1.859(6)	Ti5-O15	1.805(6)	Ti6-O6	1.845(6)
Ti4-O5	2.082(6)	Ti5-O16	1.840(7)	Ti6-O9	2.075(6)
Ti4-O12	1.796(6)	Ti5-O18	1.814(6)	Ti6-O18	1.815(6)
Ti4-N1	2.255(7)	Ti5-N3	2.260(8)	Ti6-N6	2.243(8)
Ti4-N4	2.244(7)	Ti5-N5	2.229(9)	Ti6-N8	2.259(7)
Sn1-Cl1	2.419(4)	Sn3-Cl5	2.412(4)	Sn2-Cl2	2.454(4)
Sn1-O4	2.477(5)	Sn3-O11	2.477(6)	Sn2-Cl3	2.479(3)
Sn1-O41	2.477(5)	Sn3-O11 ¹	2.477(6)	Sn2-Cl4	2.450(3)
Sn1-O61	2.462(5)	Sn3-O16	2.469(6)		
Sn1-O6	2.462(5)	Sn3-O16 ¹	2.469(6)		

Ti1-05	1.873(7)	Ti2-O29	1.864(7)	Ti3-O3	2.089(8)
Ti1-08	2.088(7)	Ti2-O34	1.804(8)	Ti3-O17	1.827(8)
Ti1-O16	2.225(7)	Ti2-O37	2.085(8)	Ti3-O24	1.839(7)
Ti1-O18	1.945(7)	Ti2-O40	1.892(7)	Ti3-O27	2.097(7)
Ti1-O23	1.818(7)	Ti2-O41	2.165(7)	Ti3-O30	2.124(7)
Ti1-O48	1.895(7)	Ti2-O52	2.032(7)	Ti3-O31	1.871(8)
Ti4-09	1.892(7)	Ti5-O2	1.805(7)	Ti6-O10	2.043(7)
Ti4-O19	2.113(7)	Ti5-O7	1.890(8)	Ti6-O17	1.797(8)
Ti4-O20	1.812(7)	Ti5-O25	2.086(8)	Ti6-O46	1.865(7)
Ti4-O35	2.069(8)	Ti5-O47	1.781(7)	Ti6-O53	1.814(8)
Ti4-O50	2.095(8)	Ti5-N5	2.245(10)	Ti6-N8	2.229(9)
Ti4-O53	1.826(8)	Ti5-N7	2.257(9)	Ti6-N12	2.271(9)
Ti7-O29	1.934(6)	Ti8-O11	1.816(7)	Ti9-09	1.831(7)
Ti7-O32	1.924(7)	Ti8-O12	1.822(7)	Ti9-O23	1.908(7)
Ti7-O39	2.069(8)	Ti8-O14	2.120(7)	Ti9-O28	2.010(7)
Ti7-O41	2.316(7)	Ti8-O36	1.817(7)	Ti9-O31	1.768(8)
Ti7-O43	1.934(7)	Ti8-N1	2.211(9)	Ti9-N4	2.261(9)
Ti7-O46	1.748(7)	Ti8-N3	2.255(8)	Ti9-N10	2.207(8)
Ti10-O2	1.842(7)	Ti11-O7	1.770(8)	Ti12-O5	1.870(7)
Ti10-O22	2.043(8)	Ti11-O12	1.810(7)	Ti12-O11	1.788(7)
Ti10-O24	1.775(8)	Ti11-O15	2.106(8)	Ti12-O16	2.282(7)
Ti10-O38	2.090(8)	Ti11-O40	1.897(7)	Ti12-O21	2.084(7)
Ti10-O48	1.918(7)	Ti11-N9	2.233(9)	Ti12-O26	2.034(7)
Ti10-O49	2.098(8)	Ti11-N11	2.286(9)	Ti12-O47	1.851(7)
Ti13-O1	1.824(7)	Ti14-O1	1.807(7)	Sn1-Cl4	2.456(3)
Ti13-O20	1.822(7)	Ti14-O4	2.099(8)	Sn1-O29	2.201(7)
Ti13-O32	1.887(7)	Ti14-O34	1.831(7)	Sn1-O40	2.228(6)
Ti13-O33	2.038(8)	Ti14-O36	1.791(7)		
Ti13-O42	2.112(7)	Ti14-N2	2.230(9)		
Ti13-O44	2.150(7)	Ti14-N6	2.267(9)		
Sn2-Cl1	2.476(3)	Sn3-Cl2	2.454(5)	Sn4-O6	2.186(8)
Sn2-O5	2.304(7)	Sn3-Cl3	2.460(5)	Sn4-O32	2.181(7)
Sn2-O9	2.377(6)	Sn3-C17	2.529(6)	Sn4-O43	2.092(9)
Sn2-O23	2.422(7)				
Sn5-Cl6	2.464(3)	Sn6-O18	2.102(8)	Sn7-Cl5	2.549(5)
Sn5-Cl8	2.532(4)	Sn6-O45	2.167(8)	Sn7-C19	2.470(3)
Sn5-O18	2.058(7)	Sn6-O48	2.171(7)	Sn7-O43	2.069(7)
1				1	

Table S4 Selected bond lengths (\AA) for TOC-63.

2. Bond valence sum calculations

Ti3	4.244			Ti6	4.156		
Ti3	O20	1.821(4)	0.984	Ti6	019	1.831(3)	0.958
Ti3	O21	1.832(3)	0.955	Ti6	O24	2.091(4)	0.474
Ti3	O28	2.124(4)	0.434	Ti6	O25	1.806(4)	1.025
Ti3	O29	1.819(4)	0.989	Ti6	O27	1.853(3)	0.902
Ti3	N13	2.232(4)	0.442	Ti6	N9	2.288(4)	0.380
Ti3	N16	2.234(5)	0.440	Ti6	N11	2.254(5)	0.417
Ti7	4.234			Ti9	4.272		
Ti7	011	1.828(3)	0.965	Ti9	012	2.033(4)	0.555
Ti7	O16 ¹	2.111(3)	0.449	Ti9	O21	1.904(4)	0.786
Ti7	019	1.833(4)	0.953	Ti9	O25	1.802(4)	1.036
Ti7	O20	1.814(4)	1.003	Ti9	O31	1.845(3)	0.922
Ti7	N6	2.232(4)	0.442	Ti9	O32	2.072(4)	0.499
Ti7	N10	2.249(5)	0.422	Ti9	O33	2.091(4)	0.474
Ti10	4.144	1	•	Ti12	4.305		
Ti10	O23	1.796(4)	1.053	Ti12	05	2.041(4)	0.543
Ti10	O27	1.848(3)	0.915	Ti12	O11 ¹	1.886(3)	0.825
Ti10	O29 ¹	1.853(4)	0.902	Ti12	O23	1.813(4)	1.005
Ti10	O35	2.077(4)	0.493	Ti12	O31	1.840(3)	0.935
Ti10	N14	2.258(5)	0.412	Ti12	O36	2.062(4)	0.513
Ti10	N17	2.298(4)	0.370	Ti12	O38	2.084(4)	0.483
Sn1	2.558			Sn3	1.810		
Sn1	Cl1	2.474(2)	0.841	Sn3	C13	2.4814(14)	0.825
Sn1	Cl4	2.463(2)	0.867	Sn3	O11 ¹	2.428(3)	0.267
Sn1	C15	2.470(3)	0.850	Sn3	O21	2.373(3)	0.310
				Sn3	O31	2.272(3)	0.408

Table S5 Bond valence sum values for mental atoms in TOC-61.

Table S6 Bond valence sum values for bridging oxygen atoms in TOC-61.

011	2.058	019	1.910	O20	1.987	O21	2.052	O23	2.058
O25	2.060	O27	1.817	O29	1.892	031	2.264		

Table S7 Bond valence sum values for mental atoms in TOC-62.

Ti1	4.216129			Ti2	4.106201		
Ti1	O4 1.851(6) 0.907286			Ti2	O2	2.059(7)	0.517131
Ti1	O6	1.879(5)	0.84116	Ti2	011	1.888(6)	0.820947

Ti1	07	2 061(6)	0 514343	Ti2	012	1 825(6)	0 973335	
	07	2.001(0)	0.514545	112	012	1.025(0)	0.975555	
Ti1	08	1.822(6)	0.981259	Ti2	016 ¹	1.874(7)	0.852605	
Ti1	O10	2.055(5)	0.522752	Ti2	017	2.094(7)	0.470455	
Ti1	014	2.111(6)	0.449329	Ti2	O 1 ¹	2.093(7)	0.471729	
Ti3	4.287058			Ti4	4.245954			
Ti3	08	1.809(6)	1.016348	Ti4	O19 ¹	1.824(5)	0.975969	
Ti3	011	1.814(7)	1.002706	Ti4	O4	1.859(6)	0.88788	
Ti3	013	2.091(6)	0.474285	Ti4	O5	2.082(6)	0.485964	
Ti3	015	1.838(6)	0.93973	Ti4	O12	1.796(6)	1.052693	
Ti3	N2	2.217(9)	0.460393	Ti4	N1	2.255(7)	0.415456	
Ti3	N7	2.275(8)	0.393595	Ti4	N4	2.244(7)	0.427993	
Ti5	4.295916	1	•	Ti6	4.241419	.241419		
Ti5	03	2.090(6)	0.475569	Ti6	019	1.821(5)	0.983915	
Ti5	015	1.805(6)	1.027396	Ti6	O6	1.845(6)	0.922119	
Ti5	016	1.840(7)	0.934665	Ti6	O9	2.075(6)	0.495245	
Ti5	018	1.814(6)	1.002706	Ti6	018	1.815(6)	1	
Ti5	N3	2.260(8)	0.40988	Ti6	N6	2.243(8)	0.429151	
Ti5	N5	2.229(9)	0.4457	Ti6	N8	2.259(7)	0.410989	
Sn1	1.932367		•	Sn3	1.941863	3	•	
Sn1	Cl1	2.419(4)	0.975969	Sn3	C15	2.412(4)	0.994609	
Sn1	O4	2.477(5)	0.234254	Sn3	011	2.477(6)	0.234254	
Sn1	O4 ¹	2.477(5)	0.234254	Sn3	O11 ¹	2.477(6)	0.234254	
Sn1	O6 ¹	2.462(5)	0.243945	Sn3	016	2.469(6)	0.239374	
Sn1	O6	2.462(5)	0.243945	Sn3	O16 ¹	2.469(6)	0.239374	
Sn2	2.61528		1					
Sn2	Cl2	2.454(4)	0.88788	1				
Sn2	C13	2.479(3)	0.82987	1				
Sn2	Cl4	2.450(3)	0.897531	1				

Table S8 Bond valence sum values for bridging oxygen atoms in TOC-62.

04	2.029	06	2.007	08	1.995	011	2.060	012	2.026
015	1.967	016	2.026	018	2.005	019	1.960		

Table S9 Bond valence sum values for mental atoms in TOC-63.

Ti1	4.164			Ti2	4.145			
Ti1	05	1.873(7)	0.855	Ti2	O29	1.864(7)	0.876	
Ti1	08	2.088(7)	0.478	Ti2	O34	1.804(8)	1.030	
Ti1	016	2.225(7)	0.330	Ti2	O37	2.085(8)	0.482	
Ti1	018	1.945(7)	0.704	Ti2	O40	1.892(7)	0.812	

Ti1	O23	1.818(7)	0.992	Ti2	O41	2.165(7)	0.388
Ti1	O48	1.895(7)	0.806	Ti2	O52	2.032(7)	0.556
Ti3	4.142		•	Ti4	4.210		•
Ti3	03	2.089(8)	0.477	Ti4	09	1.892(7)	0.812
Ti3	017	1.827(8)	0.968	Ti4	O19	2.113(7)	0.447
Ti3	O24	1.839(7)	0.937	Ti4	O20	1.812(7)	1.008
Ti3	O27	2.097(7)	0.467	Ti4	O35	2.069(8)	0.503
Ti3	O30	2.124(7)	0.435	Ti4	O50	2.095(8)	0.469
Ti3	O31	1.871(8)	0.860	Ti4	O53	1.826(8)	0.971
Ti5	4.261		Ti6	4.310			
Ti5	O2	1.805(7)	1.027	Ti6	O10	2.043(7)	0.540
Ti5	07	1.890(8)	0.817	Ti6	017	1.797(8)	1.050
Ti5	O25	2.086(8)	0.481	Ti6	O46	1.865(7)	0.874
Ti5	O47	1.781(7)	1.096	Ti6	O53	1.814(8)	1.003
Ti5	N5	2.245(10)	0.427	Ti6	N8	2.229(9)	0.446
Ti5	N7	2.257(9)	0.413	Ti6	N12	2.271(9)	0.398
Ti7	4.155			Ti8	4.295		
Ti7	O29	1.934(6)	0.725	Ti8	011	1.816(7)	0.997
Ti7	O32	1.924(7)	0.745	Ti8	O12	1.822(7)	0.981
Ti7	O39	2.069(8)	0.503	Ti8	O14	2.120(7)	0.439
Ti7	O41	2.316(7)	0.258	Ti8	O36	1.817(7)	0.995
Ti7	O43	1.934(7)	0.725	Ti8	N1	2.211(9)	0.468
Ti7	O46	1.748(7)	1.199	Ti8	N3	2.255(8)	0.415
Ti9	4.343			Ti10	4.282		
Ti9	09	1.831(7)	0.958	Ti10	O2	1.842(7)	0.930
Ti9	O23	1.908(7)	0.778	Ti10	O22	2.043(8)	0.540
Ti9	O28	2.010(7)	0.590	Ti10	O24	1.775(8)	1.114
Ti9	O31	1.768(8)	1.135	Ti10	O38	2.090(8)	0.476
Ti9	N4	2.261(9)	0.409	Ti10	O48	1.918(7)	0.757
Ti9	N10	2.207(8)	0.473	Ti10	O49	2.098(8)	0.465
Till	4.223			Ti12	4.165		
Ti11	07	1.770(8)	1.129	Ti12	05	1.870(7)	0.862
Ti11	012	1.810(7)	1.014	Ti12	011	1.788(7)	1.076
Till	015	2.106(8)	0.455	Ti12	O16	2.282(7)	0.283
Ti11	O40	1.897(7)	0.801	Ti12	O21	2.084(7)	0.483
Ti11	N9	2.233(9)	0.441	Ti12	O26	2.034(7)	0.553
Ti11	N11	2.286(9)	0.382	Ti12	O47	1.851(7)	0.907
Ti13	4.180	•		Ti14	4.357		
Ti13	01	1.824(7)	0.976	Ti14	01	1.807(7)	1.021

Ti13	O20	1.822(7)	0.981	Ti14	O4	2.099(8)	0.464	
Ti13	O32	1.887(7)	0.823	Ti14	O34	1.831(7)	0.958	
Ti13	O33	2.038(8)	0.547	Ti14	O36	1.791(7)	1.067	
Ti13	O42	2.112(7)	0.448	Ti14	N2	2.230(9)	0.444	
Ti13	O44	2.150(7)	0.404	Ti14	N6	2.267(9)	0.402	
Sn1	1.836			Sn2	1.789262			
Sn1	Cl4	2.456(3)	0.883	Sn2	Cl1	2.476(3)	0.837	
Sn1	O29	2.201(7)	0.494	Sn2	05	2.304(7)	0.374	
Sn1	O40	2.228(6)	0.459	Sn2	O9	2.377(6)	0.307	
				Sn2	O23	2.422(7)	0.272	
Sn3	2.486			Sn4	1.699			
Sn3	Cl2	2.454(5)	0.888	Sn4	O6	2.186(8)	0.514	
Sn3	C13	2.460(5)	0.874	Sn4	O32	2.181(7)	0.521	
Sn3	Cl7	2.529(6)	0.725	Sn4	O43	2.092(9)	0.663	
Sn5	2.310			Sn6	1.722			
Sn5	Cl6	2.464(3)	0.864	Sn6	O18	2.102(8)	0.645	
Sn5	C18	2.532(4)	0.719	Sn6	O45	2.167(8)	0.541	
Sn5	018	2.058(7)	0.727	Sn6	O48	2.171(7)	0.536	
Sn7	2.243				1	1		
Sn7	C15	2.549(5)	0.687					
Sn7	C19	2.470(3)	0.850					
Sn7	O43	2.069(7)	0.706	1				

Table S10 Bond valence sum values for bridging oxygen atoms in TOC-63.

01	1.998	O2	1.957	05	2.091	07	1.946	09	2.077
011	2.073	012	1.995	017	2.018	O18	1.891	O20	1.989
O23	2.041	O24	2.051	O29	2.095	031	1.995	032	2.089
O34	1.988	036	2.062	O40	2.072	O43	1.891	O46	2.072
O47	2.004	O48	2.098	053	1.973				

3. Additional structural pictures

Figure S1 Synthetic route to three compounds.

Figure S2 Top views of the total molecular structure of **TOC-61** (a), **TOC-62** (b), **TOC-63** (c). Detail drawing of **TOC-61** (d), **TOC-62** (e), **TOC-63** (f). The Coordination environment diagram of Sn²⁺ in **TOC-61** (g), **TOC-62** (h), **TOC-63** (i).

Figure S3 The coordination modes of propionic acid ligand in TOC-63.

Figure S4 Packing diagrams of TOC-61 in the view of (a) a-axis, (b) b-axis and (c) c-axis.

Figure S5 Packing diagrams of TOC-62 in the view of (a) a-axis, (b) b-axis and (c) c-axis.

Figure S6 Packing diagrams of TOC-63 in the view of (a) a-axis, (b) b-axis and (c) c-axis.

4. Powder-XRD patterns

Figure S7 Simulated and experimental PXRD patterns of TOC-61.

Figure S8 Simulated and experimental PXRD patterns of TOC-62.

Figure S9 Simulated and experimental PXRD patterns of TOC-63.

5. The energy dispersive X-ray spectroscopy (EDS) spectra

Figure S12 The EDS spectrum of TOC-63.

6. Thermogravimetrical analysis (TG)

By analyzing the TG curves of **TOC-61** to **TOC-63**, it was observed that the skeleton of the three compounds remained relatively stable until ~200 °C. Beyond this temperature, ligand detachment and structure decomposition occurred.

Figure S15 TG curve of TOC-63 in N₂ atmosphere.

7. IR spectra

The band around 3300~2800 cm⁻¹ is attributed to v(C-H). The incorporation of 1,10phenanthroline is supported by the C-H vibration at 3100~3010 cm⁻¹, and the absorption peak in the range of 1750~1410 cm⁻¹ belongs to the stretching vibration of C=O on the carboxyl group. The absorption peak below 1000 cm⁻¹ is associated with v(M-O-M).

Figure S18 FT-IR spectrum of TOC-63. S14

8. XPS spectra

Figure S21 XPS spectra of TOC-63.

9. The NLO Property

Figure S22 The open-aperture Z-scan results at 532 nm for TOC-61 thin film: the same thin film is tested at different points.

Figure S23 The open-aperture Z-scan results at 532 nm for TOC-62 thin film: the same thin film is tested at different points.

Figure S24 The open-aperture Z-scan results at 532 nm for TOC-63 thin film: the same thin film is tested at different points.

Figure S25 The open-aperture Z-scan results at 532 nm for **TOC-61** thin film: the same thin film is tested for different laser irradiation times at the same point.

Figure S26 The open-aperture Z-scan results at 532 nm for **TOC-62** thin film: the same thin film is tested for different laser irradiation times at the same point.

Figure S27 The open-aperture Z-scan results at 532 nm for **TOC-63** thin film: the same thin film is tested for different laser irradiation times at the same point.