Supporting Information

Designing Buried-Gate InGaZnO Transistors for High-Yield and Reliable Switching Characteristics

Do Hyeong Kim^{ab}[‡], Seyoung Oh^{ab}[‡], Ojun Kwon^{ab}, Soo-Hong Jeong^{ab}, Hyun Young Seo^{ab}, Eunjeong Cho^{ab}, Min Jeong Kim^{ab}, Wondeok Seo^{ab}, Jung-Dae Kwon^{*c}, Yonghun Kim^{*c}, Woojin Park^{*ab}, and Byungjin Cho^{*ab}

^aDepartment of Advanced Material Engineering, Chungbuk National University, Chungdae-ro 1,

Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea

^bDepartment of Urban, Energy, Environmental Engineering, Chungbuk National University,

Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea

^cDepartment of Energy and Electronic Materials, Nanosurface Materials Division, Korea Institute

of Materials Science (KIMS), Changwondaero, Sungsan-gu, Changwon, Gyeongnam 51508,

Republic of Korea

‡These authors contributed equally to this work

Corresponding Authors

*E-mail: jdkwon@kims.re.kr (J.-D.K.); kyhun09@kims.re.kr (Y.K.); wjpark@chungbuk.ac.kr (W.P.); bjcho@chungbuk.ac.kr (B.C.)

Fig. S1 3D schematic diagrams of (a) buried and (b) control gate transistors

Fig. S2 AFM image of control device with protruding back gate electrode, showing crown-shaped edge

Au er 💵 igzo	NARA DARA DARA		an second march and a	
Al ₂ O ₃ 🕈 Pt 📮				
	Ti 80 nm Pt	80 nm Al	<u>80 nm</u> In	80 nm

Fig. S3 Energy dispersive spectroscopy mapping data of the elements constituting the buried gate

transistor

Fig. S4 Threshold voltage extraction of (a) buried and (b) control gate transistors at $V_D = 1 V$

Fig. S5 (a) 3D Schematic image of $Pt/Al_2O_3/Pt$ capacitor. (b) capacitance-voltage characteristic of the $Pt/Al_2O_3/Pt$ capacitor.

Fig. S6 Comparison of switching power for buried- and control-gate transistors.

Zone 2 2.202 -Zone 3 Zone 4

Fig. S7 Real image showing 8×8 buried-gate transistor array with four zones.

Fig. S8a Transfer characteristics of each buried-gate transistor located in zone 1.

Fig. S8b Transfer characteristics of each buried-gate transistor located in zone 2.

Fig. S8c Transfer characteristics of each buried-gate transistor located in zone 3.

Fig. S8d Transfer characteristics of each buried-gate transistor located in zone 4.

Fig. S8e Transfer characteristics of each control-gate transistor located in zone 1.

Fig. S8f Transfer characteristics of each control-gate transistor located in zone 2.

Fig. S8g Transfer characteristics of each control-gate transistor located in zone 3.

Fig. S8h Transfer characteristics of each control-gate transistor located in zone 4.

Fig. S9 The test of defining device breakdown phenomena causing large gate leakage current

Fig. S10 Negative shift of threshold voltage in V_G -I_D sweeping endurance cycling test for (a) buried and (b) control gate transistors

Series resistance calculation

The series resistance in Figure 4f was calculated using the conventional drain current equation (1) proposed as an extraction technique ¹.

$$I_{D} = \mu_{eff} C_{ox} \frac{W_{eff}}{L_{eff}} (V_{G} - V_{th} - \frac{I_{D} R_{SD}}{2}) (V_{D} - I_{D} R_{SD})$$
(1)

where μ_{eff} is the effective mobility, C_{ox} is the gate oxide capacitance, W_{eff}/L_{eff} is the effective channel width/length, V_{th} is the threshold voltage, and R_{SD} is the series resistance. The series resistance is extracted by utilizing the ratio of two linear transfer curves.

$$\frac{I_{D1}}{I_{D2}} = \frac{\mu_{eff} C_{ox} \frac{W_{eff}}{L_{eff}} (V_G - V_{th1} - \frac{I_D R_{SD}}{2}) (V_{D1} - I_{D1} R_{SD})}{\mu_{eff} C_{ox} \frac{W_{eff}}{L_{eff}} (V_G - V_{th2} - \frac{I_D R_{SD}}{2}) (V_{D2} - I_{D2} R_{SD})}$$
(2)

By manipulating the equation (2) above, a quadratic equation was extracted and subsequently solved.

$$R_{SD}^{2}\left(\frac{I_{D2}-I_{D1}}{2}\right) + R_{SD}\left(V_{th2}-V_{th1}\frac{V_{D1}-V_{D2}}{2}\right) - \frac{(V_{G}-V_{th1})I_{D2}V_{D1}-(V_{G}-V_{th2})I_{D1}V_{D2}}{2} = 0$$

19

 \mathbf{S}

Reference

1 J. P. Campbell, K. P. Cheung, J. S. Suehle and A. Oates, *IEEE Electron Device Lett.*, 2011, **32**, 1047–1049.