## **Electronic Supporting Information**

## Metal Co-doped Cesium Manganese Chlorines Nanocrystals with Highly Efficiency and Tunable Red Emission

Shijia Liu,<sup>a</sup> Xuebin Zhang,<sup>a</sup> Qin Xu,<sup>\*a</sup> Zhiheng Xu,<sup>b</sup> Haibo Zeng,<sup>\*c</sup> and Dandan Yang<sup>\*a</sup>

<sup>a</sup> School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China. <sup>b</sup> Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.

<sup>c</sup> MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

## **Experimental Section**

*Materials:* Cesium carbonate (Cs<sub>2</sub>CO<sub>3</sub>, 99%, Aladdin), Manganese chloride tetrahydrate (MnCl<sub>2</sub>·4H<sub>2</sub>O, 99.99%, Macklin), Thulium chloride hexahydrate (TmCl<sub>3</sub>·6H<sub>2</sub>O, 99.99%, Aladdin), Ytterbium chloride hexahydrate (YbCl<sub>3</sub>·6H<sub>2</sub>O, 99.99%, Aladdin), Erbium chloride hexahydrate (ErCl<sub>3</sub>·6H<sub>2</sub>O, 99.99%, Macklin) 1-octadecene (ODE,  $\geq$ 90%, Macklin), oleic acid (OA, 85%, Aladdin), oleylamine (OAm, 80-90%, Aladdin), ethyl acetate (C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>, Shanghai test, 99.5%), n-octane (C<sub>8</sub>H<sub>18</sub>, 96%, Macklin). All chemicals were used without further purification.

**Preparation of Cesium oleate precursors:**  $Cs_2CO_3$  (0.36 g, 1.1 mmoL), octadecene (15 mL), and oleic acid (1.5 mL) were added into 100 mL 3-neck flask, exhausted for half an hour at 120°C, and then heated to 150°C under Ar atmosphere until all  $Cs_2CO_3$  reacted with OA. The solution was kept at 120°C to avoid solidification before injection.

**Synthesis of CsMnCl<sub>3</sub> NCs:** MnCl<sub>2</sub>·4H<sub>2</sub>O (0.0744 g, 0.376 mmol), OA (1.5 mL), OAm (0.5 mL), and ODE (10 mL) were loaded into a 100 mL 3-neck flask and degassed for half an hour at 120°C under Ar flow. The temperature was increased to 140°C under Ar atmosphere. The preheated Cs-oleate solution (0.8 mL, 0.035 mmoL) was swiftly injected into the transparent precursor solution. After 5 seconds, the reaction mixture was cooled down using an ice bath.

**Purification of the CsMnCl<sub>3</sub> NCs:** Ethyl acetate was added into the crude solution at a volume ratio of 1:3 and the mixture were centrifuged for 1 min at 8000 rpm. The precipitate was dispersed into 1.5 mL of hexane to obtain a clear solution.

Synthesis of  $Tm^{3+}$ -CsMnCl<sub>3</sub> NCs: MnCl<sub>2</sub>·4H<sub>2</sub>O (0.072-0.065 g, 0.365-0.327 mmol), TmCl<sub>3</sub>·6H<sub>2</sub>O (0.004-0.019 g, 0.011-0.049 mmol), OA (1.5 mL), OAm (0.5 mL), and ODE (10 mL) were loaded into a 100 mL 3-neck flask and degassed for half an hour at 120°C under Ar flow. The other procedures were the same as for the synthesis of the CsMnCl<sub>3</sub> NCs.

Synthesis of Yb<sup>3+</sup>-CsMnCl<sub>3</sub> NCs:  $MnCl_2 \cdot 4H_2O$  (0.072-0.065 g, 0.365-0.327 mmol),  $YbCl_3 \cdot 6H_2O$  (0.004-0.022g,0.011-0.056mmoL), OA (1.5 mL), OAm (0.5 mL), and ODE (10 mL) were loaded into a 100 mL 3-neck flask and degassed for half an hour at 120°C under Ar flow. The other procedures were the same as for the synthesis of the CsMnCl<sub>3</sub> NCs.

*Synthesis of Er*<sup>3+</sup>-*CsMnCl*<sub>3</sub> *NCs:* MnCl<sub>2</sub>·4H<sub>2</sub>O (0.072-0.065 g, 0.365-0.327 mmol), ErCl<sub>3</sub>·6H<sub>2</sub>O (0.004-0.021 g, 0.011-0.056 mmol), OA (1.5 mL), OAm (0.5 mL), and ODE (10 mL) were loaded into a 100 mL 3-neck flask and degassed for half an hour at 120°C under Ar flow. The other procedures were the same as for the synthesis of the CsMnCl<sub>3</sub> NCs.

*Characterizations:* The transmission electron microscopy (TEM) images were taken on a transmission electron microscope (Tecnai 12). The HR-TEM images and EDS elemental mappings were taken on a field emission transmission electron microscope (Tecnai G2 F30 S-TWIN). Steady-state PL spectra were measured by the F-7000 fluorescence spectrometer 2014XHTM158. Ultraviolet-visible (UV-vis) absorption spectra were carried out with LAMBDA 650 spectrometer (PerkinElmer, USA). The X-ray

diffraction (XRD) was performed on a D8 ADVANCE diffractometer. The absolute PLQY of NCs solution was determined using a Quantaurus-QY absolute photoluminescence quantum yield spectrometer (C11347-11, Hamamatsu Photonics, Japan). The time-resolved decay data were performed on an Edinburgh FLS1000 fluorescence spectrometer.



Figure S1. Synthesis of undoped and Tm-doped CsMnCl<sub>3</sub> using hot-injection method.



Figure S2. TEM images of CsMnCl<sub>3</sub> NCs dispersed in octane (left) and tetradecane (right).



**Figure S3.** The photographs of toluene, cyclohexane, n-hexane, octane, tetradecane solution of CsMnCl<sub>3</sub> NCs under natural light (left) and 365 nm UV lamps (right), respectively.



Figure S4. XPS data of Cs 3d for  $Tm^{3+}$ -CsMnCl<sub>3</sub> and CsMnCl<sub>3</sub> NCs.



**Figure S5.** TEM images (above) and corresponding size distributions (below) of (a) 0%, (b) 3%, (c) 7%, and (d) 13% Tm doing of  $CsMnCl_3NCs$ .



**Figure S6.** The PL (a) and normalized PL (b) emission spectra of undoped CsMnCl<sub>3</sub> NCs after illuminations at the six different excitation wavelengths.



**Figure S7.** UV-vis of Er<sup>3+</sup>-CsMnCl<sub>3</sub> NCs (a) and Yb<sup>3+</sup>-CsMnCl<sub>3</sub> NCs (b). The insets are luminescence photographs of Er<sup>3+</sup>-CsMnCl<sub>3</sub> NCs (a) and Yb<sup>3+</sup>-CsMnCl<sub>3</sub> NCs (b) under a 365 nm UV lamp. PL spectra of Er<sup>3+</sup>-CsMnCl<sub>3</sub> NCs (c) and Yb<sup>3+</sup>-CsMnCl<sub>3</sub> NCs (d).



**Figure S8.** Tauc plot analysis of CsMnCl<sub>3</sub> NCs and Pb/Tm co-doped CsMnCl<sub>3</sub> NCs. (a) The bandgap of CsMnCl<sub>3</sub> NCs 3.85 eV could be estimated. (b) The bandgap of Pb/Tm co-doped CsMnCl<sub>3</sub> NCs is 3.60 eV, 3.59 eV, 3.57 eV and 3.54 eV, respectively.

| Samples                         | $A_1$ | $A_2$ | A <sub>3</sub> | $\tau_{1}\left(\mu s\right)$ | $\tau_{2}\left(\mu s\right)$ | $\tau_{3}\left(\mu s\right)$ | τ (μs) |
|---------------------------------|-------|-------|----------------|------------------------------|------------------------------|------------------------------|--------|
| CsMnCl <sub>3</sub>             | 0.22  | 0.42  | 0.35           | 3.60                         | 52.53                        | 198.50                       | 162.10 |
| $7\%Tm^{3+}-CsMnCl_{3}$         | 0.19  | 0.68  | 0.12           | 82.89                        | 298.84                       | 533.08                       | 340.82 |
| 15%Pb:7%Tm- CsMnCl <sub>3</sub> | 0.47  | 0.34  | 0.18           | 16.30                        | 140.65                       | 467.64                       | 330.93 |

Table S1. The parameters of PL decay lifetimes of undoped, 7% Tm<sup>3+</sup> and Pb/Tm co-doped CsMnCl<sub>3</sub> NCs.



Figure S9. PL decay curves of Pb/Tm co-doped CsMnCl<sub>3</sub> NCs.



Figure S10. UV-vis and PL spectra of NCs with 50% Pb and 7% Tm doping.



Figure S11. XRD pattern of NCs with 50% Pb and 7% Tm doping.



Figure S12. XRD pattern of CsMnCl<sub>3</sub> film after 15 days in air.