Supplementary materials

Revealing the crystallization dynamics of Sb-Te phase change materials by

large-scale simulations

Kaiqi Li^a, Bin Liu^b, Jian Zhou^a, and Zhimei Sun^{a,*}

^a School of Materials Science and Engineering, Beihang University, Beijing 100191, China ^b School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China

*Corresponding author: Zhimei Sun (zmsun@buaa.edu.cn)

1. The energy-volume curves and melting points (T_m) in elementary Sb and Te

Fig. S1. (a) and (b) The energy-volume (E-V) curves for elementary Sb and Te. (c) and (d) The calculated $T_{\rm m}$ for elementary Sb and Te by solid-liquid coexistence method¹.

2. The energy-volume curves and melting points (T_m) in Sb₄Te₃, Sb₈Te₃ and Sb₁₆Te₃

Fig. S2. (a-c) The energy-volume (E-V) curve for Sb₄Te₃, Sb₈Te₃ and Sb₁₆Te₃ compositions. (d-f) The calculated melting point $T_{\rm m}$ for Sb₄Te₃, Sb₈Te₃ and Sb₁₆Te₃ compositions.

The corresponding lattice parameters fitted from energy-volume curves are listed in Table S1.

Table S1. Equilibrium volume and lattice parameters of Sb_4Te_3 , Sb_8Te_3 and $Sb_{16}Te_3$. The DFT results are calculated at the PBE-D3(BJ) functional.

Component	Space	DFT Prediction		NEP Calculation	
	Group	Volume (Å ³)	Lattice parameters (Å)	Volume (Å ³)	Lattice parameters (Å)
Sb ₄ Te ₃	R-3m	1339.94	<i>a</i> = 4.341, <i>c</i> = 82.109	1334.56	<i>a</i> = 4.362, <i>c</i> = 80.993
Sb ₈ Te ₃	R-3m	1023.98	<i>a</i> = 4.350, <i>c</i> = 62.484	1023.343	<i>a</i> = 4.398, <i>c</i> = 61.086
Sb ₁₆ Te ₃	<i>R-3m</i>	1750.64	<i>a</i> = 4.350, <i>c</i> = 106.810	1744.47	<i>a</i> = 4.394, <i>c</i> = 104.325

3. The radial distribution function (RDF) of elementary Sb and Te

Fig. S3. The radial distribution function (RDF) of (a) liquid Sb, (b) liquid Te, (c) amorphous Sb and (d) amorphous Te.

4. The partial RDF of amorphous Sb₂Te₃ phase

Fig. S4. The partial RDF of amorphous Sb₂Te₃ for (a) Sb-Te, (b) Sb-Sb and (c) Te-Te pairs.

5. The RDF of large size supercells in Sb₂Te and Sb₂Te₂ components

Fig. S5. The RDF under different supercell sizes for (a) liquid Sb_2Te_2 , (b) liquid Sb_2Te_2 , (c) amorphous Sb_2Te_2 and (d) amorphous Sb_2Te_2 .

6. The effect of quenching-rate in generating Sb₂Te₃ amrophous phase

Fig. S6. The RDF of Sb₂Te₃ amorphous phase under different quenchin-rate of 1 K/ps, 5 K/ps and 10 K/ps.

7. The RDF of Sb₂Te, Sb₂Te₂ and Sb₂Te₃ compounds after a 2 ns crystallization simulations at different temperatures

Fig. S7. (a-c) The RDF after crystallization process at different temperatures for Sb₂Te, Sb₂Te₂ and Sb₂Te₃.

8. The analysis on amorphous phase before crystallization using Polyhedral Template Matching

Fig. S8. (a-c) The snapshots of initial amorphous Sb₂Te, Sb₂Te₂ and Sb₂Te₃ compounds before crystallization. The atoms possessed a cubic-type order are colored by purple and the disorder atoms are colored by light gray. The atom types are identified by the polyhedral template matching method² and the RMSE cutoff is 0.15. These models are rendered using OVITO software³. R_{cubic} indicates the ratio of cubic-type atoms.

9. The construction of dataset for fitting NEP potential

		Cells in training	Cells in testing	
		set	set	
Isolated atom	Sb / Te	2	0	
Dimer	Sb-Sb / Sb-Te / Te-Te	105	0	
Create II'r a riberra	Sb / Te / Sb ₂ Te / SbTe /	(05	231	
Crystalline phase	Sb ₂ Te ₃	693		
Defect structure	Sb ₂ Te / SbTe / Sb ₂ Te ₃	81	0	
	Sb / Te / Sb ₂ Te / SbTe /	70	23	
Molten phase in 3000 K	Sb ₂ Te ₃	/8		
Liquid phase in 2000 K and	Sb / Te / Sb ₂ Te / SbTe /	205	153	
1000 K	Sb ₂ Te ₃	205		
A	Sb / Te / Sb ₂ Te / SbTe /	402	245	
Amorphous phase	Sb ₂ Te ₃	403		
D (1 1 ()	Sb / Te / Sb ₂ Te / SbTe /	127	10	
Perturbed structure	Sb ₂ Te ₃	13/	10	
Total		1706	662	

Table S2. Summary of the dataset for training NEP potential.

References

- 1. J. Zhu, Q. Wang and H. Wang, Acta Metall. Sin., 2017, 53, 1018-1024.
- 2. P. M. Larsen, S. Schmidt and J. Schiøtz, Model. Simul. Mat. Sci. Eng., 2016, 24, 055007.
- 3. A. Stukowski, *Model. Simul. Mat. Sci. Eng.*, 2009, **18**, 015012.