Supplementary Information

Efficient Additive-free FAPbI₃ Perovskite Solar Cells Achieved by Promoting Homogeneity

Fanxiu Feng¹, Yan Guan², Fangzhou Liu¹, Cuncun Wu¹, Huhu Su¹, Biao Wang¹, Xian Zhang¹, Yuchao Liang¹, Shaogeng Cai¹, Yangyang Zhang^{*,1}, Lixin Xiao^{*,3}, Shijian Zheng^{*,1}

¹ Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China

²College of Chemistry and Molecular Engineering, Peking University, Beijing 100871,P. R. China

³ State Key Laboratory for Macroscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China

AUTHOR INFORMATION

Corresponding Authors

yyzhang@hebut.edu.cn lxxiao@pku.edu.cn sjzheng@hebut.edu.cn

Figure S1. Photograph and SEM image of the perovskite films prepared by LPA using a DMF–DMSO cosolvent. *J–V* characteristics of PSCs using different solvent system.

Figure S2. XRD patterns of three different perovskite films.

Figure S3. Dark *J*–*V* curves for PSCs fabricated with LPA-7 and LPA-14 films.

Figure S4. PL spectrum of the bare perovskite films and perovskite/SnO₂ films.

Figure S5. PL mapping images (carrier lifetime) of buried interface of LPA-14 and LPA-7 films, as well as the corresponding carrier lifetime distribution.

Figure S6. EQE spectrum and integrated current density for PSCs fabricated with LPA-7 and

LPA-14 films.

Figure S7. J-V curves of PSCs fabricated with LPA-7 and LPA-14 films measured in forward and

reverse scans.

Figure S8. SCLC measurements of hole-only devices based on LPA-14 and LPA-7 films.

RMS (nm)
13.57
32.74
42.56

Table S1. RMS roughness of LPA-7, LPA-14 and LPA-20 samples.

Table S2. Previously report photovoltaic parameters of compositionally pure FAPbI₃ PSCs.

$V_{\rm OC}$ (V)	$J_{\rm SC}~({\rm mA/cm^2})$	FF (%)	PCE (%)	Year	Reference
0.94	23.3	65	14.2	2014	Eperon et al. ¹
0.991	20.94	69	14.32	2014	Lee et al. ²
1.11	21.43	70	16.59	2015	Wozny et al. ³
1.048	21.84	73.6	16.84	2016	Aguiar et al. ⁴
0.951	24.1	67.7	15.5	2017	Fu et al. ⁵
1.048	24.23	64.6	16.41	2018	Lee et al. ⁶
1.011	23.63	63.5	15.16	2019	Yang et al. ⁷
1.027	24.84	77.08	19.66	2019	Kim et al. ⁸
1.04	23.00	69	16.55	2020	Lyu & Park ⁹
0.99	23.28	74	17.1	2020	Akin et al. ¹⁰
1.04	24.8	74.6	19.3	2020	Yadavalli et al. ¹¹
1.08	22.13	72.8	17.39	2021	Zhang et al. ¹²
1.074	24.90	75.4	20.19	2022	Lin et al. ¹³
Not available	Not available	Not available	21.6	2022	Du et al. ¹⁴
1.131	24.58	76.0	21.1	2023	This work

Table S3. Fitted values of different electronic parameters from dark Nyquist plots of LPA-7 and

LPA-14 devices.

Device	$R_{\rm s}\left(\Omega ight)$	$R_{\mathrm{ct}}\left(\Omega\right)$	C_1 (F)	$R_{ m rec}\left(\Omega ight)$	$CPE_1(F)$
LPA-7	0.916	2573	1.098×10-8	1.269×10 ²⁰	8.220×10 ⁻⁷
LPA-14	2.804	3797	1.283×10-8	9.239×10 ¹⁹	5.593×10-7

Reference

- 1 G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz and H. J. Snaith, *Energy Environ. Sci.*, 2014, 7, 982-988.
- 2 L.-W. Lee, D.-J. Seol, A.-N. Cho and N.-G. Park, *Adv. Mater.*, 2014, 26, 4991-4998.
- 3 S. Wozny, M. Yang, A. M. Nardes, C. C. Mercado, S. Ferrere, M. O. Reese, W. Zhou and K. Zhu, *Chem. Mater.*, 2015, 27, 4814-4820.
- 4 J. A. Aguiar, S. Wozny, T. G. Holesinger, T. Aoki, M. K. Patel, M. Yang, J. J. Berry, M. Al-Jassim, W. Zhou and K. Zhu, *Energy Environ. Sci.*, 2016, 9, 2372-2382.
- Y. Fu, T. Wu, J. Wang, J. Zhai, M. J. Shearer, Y. Zhao, R. J. Hamers, E. Kan, K. Deng, X.-Y.
 Zhu and S. Jin, *Nano Lett.*, 2017, 17, 4405-4414.
- J.-W. Lee, Z. Dai, T.-H. Han, C. Choi, S.-Y. Chang, S.-J. Lee, N. D. Marco, H. Zhao, P. Sun,
 Y. Huang and Y. Yang, *Nat. Commun.*, 2018, 9, 3021.
- 7 G. Yang, H. Zhang, G. Li and G. Fang, *Nano Energy*, 2019, **63**, 103835.
- M. Kim, G.-H. Kim, T. K. Lee, I. W. Choi, H. W. Choi, Y. Jo, Y. J. Yoon, J. W. Kim, J. Lee,
 D. Huh, H. Lee, S. K. Kwak, J. Y. Kim and D. S. Kim, *Joule*, 2019, 3, 2179-2192.
- 9 M. Lyu and N.-G. Park, *Sol. RRL*, 2020, **4**, 2000331.
- 10 S. Akin, E. Akman and S. Sonmezoglu, Adv. Funct. Mater., 2020, 30, 202002964.
- 11 S. K. Yadavalli, Z. Dai, M. Hu, Q. Dong, W. Li, Y. Zhou, R. Zia and N. P. Padture, *Acta Mater.*, 2020, **193**, 10-18.
- Y. Zhang, Y. Li, L. Zhang, H. Hu, Z. Tang, B. Xu and N.-G. Park, *Adv. Energy Mater.*, 2021, 11, 2102538.
- 13 D. Lin, Y. Gao, T. Zhang, Z. Zhan, N. Pang, Z. Wu, K. Chen, T. Shi, Z. Pan, P. Liu and W. Xie, *Adv. Funct. Mater.*, 2022, **32**, 2208392.
- 14 T. Du, T. J. Macdonald, R. X. Yang, M. Li, Z. Jiang, L. Mohan, W. Xu, Z. Su, X. Gao, R. Whiteley, C.-T. Lin, G. Min, S. A. Haque, J. R. Durrant, K. A. Persson, M. A. McLachlan and J. Briscoe, *Adv. Mater.*, 2022, 34, 2107850.