Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supplementary Information A Universal Supramolecular Assembly Strategy for Achieving Efficient Tunable White Emission and Anticounterfeiting in Antimony doped Tin(IV)-based Vacancy-Ordered Double Perovskites

Minghui Lu,^a Hui Peng,^{*a} Qilin Wei,^b Shichao Zhou,^a Yongrun Dong,^a Shuiyue Yu,^a Jialong Zhao,^c Xianci Zhong^d and Bingsuo Zou^{*a}

^aState Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

^bSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
^cSchool of Physical Science and Technology, Guangxi University, Nanning 530004, China.
^dKey Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China

*Email: penghuimaterial@163.com (Hui Peng); zoubs@gxu.edu.cn (Bingsuo Zou)

Feed ratio	Sn	Sb	Measured ratio
1 %	6.66	0.28	4.035 %
5 %	8.36	0.58	6.488 %
10 %	5.76	0.49	7.767 %
20 %	5.64	1.38	19.658 %
40 %	5.34	1.81	25.315 %
60 %	6.67	1.98	22.890 %

Table S1. Elemental analysis of Sb/(Sn+Sb) ratio in (CsC)₂SnCl₆:Sb³⁺ single crystal via EDS.

Table S2. Elemental analysis of Sb/(Sn+Sb) ratio in (CsC)₂SnCl₆:Sb³⁺ via ICP-OES.

Feed ratio	Sn	Sb	Measured ratio
1 %	111.578	6.754	5.708 %
5 %	110.033	8.531	7.195 %
10 %	105.376	11.876	10.129 %
20 %	100.200	16.026	13.789 %
40 %	88.420	21.948	19.886 %
60 %	78.237	23.997	23.468 %

Table S3. Summary of the emission wavelengths and the PL intensity ratio of **Band A** and **Band B** in Sb³⁺-doped $(AC)_2$ SnCl₆ (A = K, Rb, Cs) compounds under excitation by a Xenon lamp at 322 nm and 370 nm.

	$\lambda_{\rm ex} = 322 \ \rm nm$		$\lambda_{ex} =$	$\lambda_{em} =$	$\lambda_{em} =$	Stokes	
Compounds	Band A (nm)	Band B (nm)	I _{Band A} / I _{Band B}	370	Band A	Band B	Shift
				nm	(nm)	(nm)	(nm)
(KC) ₂ SnCl ₆ : Sb ³⁺	492	654	80%	654	321	370	284
(RbC) ₂ SnCl ₆ : Sb ³⁺	496	659	73%	657	321	370	287
$(CsC)_2SnCl_6: Sb^{3+}$	509	669	47%	662	322	368	294

Fig. S1 Raman spectra of 18-crown-6 ether, A₂SnCl₆ and (AC)₂SnCl₆.

Fig. S2 High-resolution XPS spectra of (a-c)all, (d) Sn 3d, (e) Sb 3d, (f) Cl 2p of Sb³⁺-doped (AC)₂SnCl₆, (g) K 2p of Sb³⁺-doped (KC)₂SnCl₆, (h) Rb 3d of Sb³⁺-doped (RbC)₂SnCl₆, and (i) Cs 3d of Sb³⁺-doped (CsC)₂SnCl₆.

Fig. S3 SEM and EDS data of Sb³⁺ doped (a) (KC)₂SnCl₆, (b) (RbC)₂SnCl₆, and (c) (CsC)₂SnCl₆.

Fig. S4 SEM images of $(CsC)_2SnCl_6$: x% Sb³⁺ with various Sb³⁺ doping concentrations (x = 1-60).

Fig. S5 PLE and PL spectra of (a) (KC)₂SnCl₆, (b) (RbC)₂SnCl₆, and (c) (CsC)₂SnCl₆.

Fig. S6 Decay lifetimes of (a) (KC)₂SnCl₆, (b) (RbC)₂SnCl₆, and (c) (CsC)₂SnCl₆, monitored at high-energy emission band (top) and low-energy emission band, respectively (bottom).

Fig. S7 Simulated and experimental PXRD results of A_2 SnCl₆ (A = K, Rb, and Cs).

Fig. S8 Comparison of PL and PLE spectra between Sb³⁺-doped (a) Rb₂SnCl₆ and (RbC)₂SnCl₆, and (b) Cs₂SnCl₆ and (CsC)₂SnCl₆. PL spectra of (c) Rb₂SnCl₆:x% Sb³⁺ and (d) Cs₂SnCl₆:x% Sb³⁺ under 365 nm excitation.

Fig. S9 Optical images of K_2SnCl_6 : Sb³⁺ under (a) natural light and (b) 365 nm UV lamp. (c) PL spectrum of K_2SnCl_6 : Sb³⁺ under 365 nm excitation.

Fig. S10 PLQY of (a) Rb₂SnCl₆: 10% Sb³⁺ and (b) Cs₂SnCl₆: 15% Sb³⁺ under 365 nm excitation.

Fig. S11 PL spectra of varying doping concentrations of (a) $(KC)_2SnCl_6:x\%$ Sb³⁺, (b) $(RbC)_2SnCl_6:x\%$ Sb³⁺ and (c) $(CsC)_2SnCl_6:x\%$ Sb³⁺, under 370 nm excitation.

Fig. S12 PLQY of (a) (KC)₂SnCl₆: 60% Sb³⁺, (b) (RbC)₂SnCl₆: 20% Sb³⁺, and (c) (CsC)₂SnCl₆: 40% Sb³⁺ under 365 nm excitation.

Fig. S13 PLE wavelength dependent PL spectra of (AC)₂SnCl₆: Sb³⁺.

 $(AC)_2 SnCl_6 : Sb^{3+}$ powder

Fig. S14 Optical pictures of (a) $(CsC)_2SnCl_6$: Sb³⁺ crystals and (b) $(AC)_2SnCl_6$: Sb³⁺ (A = K, Rb, and Cs) powders under natural light, 365 nm, and 302 nm UV irradiation.

Fig. S15 CIE coordinates of the single-component WLED based on Sb^{3+} -doped (AC)₂SnCl₆ powders with a 310 nm UV chip.

Fig. S16 (a-c) The (a-c) absorption spectra and (d,-f) the bandgap value determined by the Tauc plots of pristine and Sb³⁺ doped $(AC)_2$ SnCl₆, A = K, Rb, and Cs, respectively.

Fig. S17 The Band A and Band B position under various temperatures.

Fig. S18 Integrated PL intensity of (a-c) Band A and (d-f) Band B of (AC)₂SnCl₆: Sb³⁺ as a function of 1/T.

Fig. S19 PL stability of Sb³⁺-doped (a) (KC)₂SnCl₆, (b) (RbC)₂SnCl₆, and (c) (CsC)₂SnCl₆ under 322 nm UV continuous illumination.

Fig. S20 (a) PL stability and (b) peak position of 40% Sb³⁺-doped (CsC)₂SnCl₆ at pristine and after 60 days.

Fig. S21 PXRD patterns of the Sb^{3+} -doped (CsC)₂SnCl₆ powder stored at ambient 60 days (red), and the simulated of ICSD#2122199 (black).

Fig. S22 Spectrum, WLED parameters, and drive current-dependent spectra of the singlecomponent WLED based on Sb^{3+} -doped (a-c) (RbC)₂SnCl₆ and (d-f) (CsC)₂SnCl₆ powders, using a 310 nm UV chip. The inset in (a) and (d) exhibits the optical images of the WLED.

Fig. S23 PL spectrum and CIE coordinates of (KC)₂SnCl₆: Sb³⁺ under 254 nm UV excitation.

Fig. S24 PL spectrum (a) and CIE color coordinates (b) of $(KC)_2SnCl_6$: Sb³⁺ under 302 nm UV excitation with a 400-550 nm filter. PL and PLE spectra of $(CH_6N_3)_2MnCl_4$ (c) and the CIE color coordinates under 365 nm UV excitation.