Supplementary Information

Turn-on Fluorescence Humidity Sensing Based on Cs$_4$PbBr$_6$

Nanocrystal Array

Yelu Wei,a Yang Liu,a Yuchen Zhang,a Jiahao Pan,a Shuhan Pan,a Ying Wei,a Bingcai Pan,b Zhenda Lu*ab and Xing Xing*ab

aCollege of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China

bSchool of the Environment, Research Center for Environmental Nanotechnology (ReCEN), Nanjing University, Nanjing 210023, China

*E-mail: luzhenda@nju.edu.cn; xxing90@foxmail.com
Fig. S1. The Schematic illustration of crystal structure change and transformation process from Cs₄PbX₆ to CsPbX₃ after water treatment.

Fig. S2. Fabrication process for the Cs₄PbBr₆ nanoparticlas (NPs) array using a modified AFM nanoxerography technique. (A) The schematic diagram of assembly process which consists of two steps: charge writing and Cs₄PbBr₆ NPs assembly. (B) Surface potential characterization using KPFM scanning of AFM. (C) Height scan of Cs₄PbBr₆ NPs array after assembly and its corresponding height distribution on the left line. (D) Dark field imaging of Cs₄PbBr₆ NPs array after assembly.
Fig. S3. TEM images of Cs$_4$PbBr$_6$ NPs array before exposed to water.

Fig. S4. TEM image of CsPbBr$_3$ array transformed by Cs$_4$PbBr$_6$ NPs array after exposed to 70% humidity for 10 minutes.
Fig. S5. The spectrums over time at a relative humidity of 80%.

Fig. S6. Box plot the relative fluorescence intensity (RFI) for the entire duration of 60 minutes.