Supporting Information

Triplet Formation Inhibits Amplified Spontaneous Emission in Perylene-Based Polycyclic Aromatic Hydrocarbons

Sergio Moles Quintero,^a Jose C. Mira-Martínez,^b Ya Zou,^c Marcos Díaz-García, ^a Pedro G. Boj,^d Jishan Wu,*^c María A. Díaz-García,*^b Jose M. Marín-Beloqui,*^a Juan Casado*^a

^aDepartment of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, Malaga, 29071, Spain. E-mail: jm.marinbeloqui@uma.es, casado@uma.es.

^bDepartamento Física Aplicada and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, 03080, Alicante, Spain. Email: maria.diaz@ua.es

^cDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 (Singapore). Email: chmwuj@nus.edu.sg

^dDepartamento Óptica, Farmacología y Anatomía, and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, 03080, Alicante, Spain.

*Corresponding Authors:

Email address: chmwuj@nus.edu.sg

Email address: maria.diaz@ua.es

Email address: jm.marinbeloqui@uma.es

Email address: casado@uma.es.

Experimental section

Spectroscopic Characterisation. The absorbance and emission properties were evaluated in a 2methyl tetrahydrofuran (2-MeTHF) solution at different temperatures from room temperature to 80 K using a cryostat OPTISTAT from Oxford instruments. Emission was measured using a spectrofluorometer from Edinburgh Analytical Instrument (FLS920P) equipped with a pulsed xenon flash-lamp, Xe900, of 400 mW. Microsecond transient absorption spectroscopy was measured in fresh *ca.* 10^{-3} M CH₂Cl₂ solutions at room temperature by means of a laser flash photolysis system from Luzchem with a pulsed Nd:YAG laser, using 355 nm excitation wavelength. Probe light was provided by a Lo255 Oriel xenon lamp. The apparatus is completed with a 77200 Oriel monochromator, an Oriel photomultiplier (PMT) system and a TDS-640A Tektronix oscilloscope. The energy single pulses were of *ca.* 15 mJ. Femtosecond transient absorption spectroscopy was performed with a Helios equipment from Ultrafast Systems, equipped with an amplified femtosecond Spectra-Physics Solstice-100F laser (with a 128 fs pulse width and 1 KHz repetition rate) coupled with a Spectra-Physics TOPAS Prime F optical parametric amplifier (195-22000 nm). Samples were studied in CH₂Cl₂ *ca.* 10^{-3} M solutions, with an excitation wavelength of 490, 560 and 640 nm for YZ-1, YZ-2 and YZ-3, respectively.

Thin Film Fabrication. YZ-n:PS films were prepared by spin-coating a toluene solution of the YZ-n dyes and PS as inert polymer matrix (dye content with respect to PS was in the range 0.5 - 6 wt%, see table S1). This solution was spin-coated over quartz substrates using a SMA-SPINNER 6000 PRO. The amount of solvent was adjusted to obtain proper film thickness (see values in Table S1) to ensure minimal waveguide losses and optimized ASE performance.

Thin Film Characterisation. Thin film absorption (and transmission) and PL characterisation was performed using a double-beam Jasco V-650 spectrophotometer and a Jasco FP-6500 spectrofluorometer, respectively. Film thickness was determined from the transmission spectrum in the transparent spectral window by a method recently reported by some of the authors (V. Bonal et al. *Polymers*, 2021, **13**, 2545).

The ASE characterisation of the films was performed under excitation with a built-in optical parametric oscillator pumped with the third harmonic of a pulsed Nd:YAG laser (10 Hz; 355 nm). The pump energy density impinging over the samples was varied using neutral density filters. The beam was shaped into a stripe (3.5 mm \times 0.5 mm) with a cylindrical lens and an adjustable slit and then projected perpendicularly over the sample. The emitted ASE light was collected from the sample edge with an optical fiber coupled to a spectrophotometer (Ocean Optics, USB2000+ UV–VIS) of 1.3 nm resolution.

Molecule	Solvent	Φ _F	Fluorescence Lifetime				
YZ-1	CH ₂ Cl ₂	0.89	3.5 ns				
	2Me-THF	0.70	3.4 ns				
YZ-2	CH ₂ Cl ₂	0.76	10.9 ns				
	2Me-THF	0.55	8.0 ns				
YZ-3	CH ₂ Cl ₂	0.52	11.0 ns				
	2Me-THF	0.52	9.4 ns				

Table S1. PL parameters comparison between 2-MeTHF and CH_2Cl_2 solutions. Fluorescence quantum yield (Φ_F) was measured using an integrating sphere.

Fig. S1. Fluorescence (a, c, e) spectra and (b, d, f) decays of (a, b) YZ-1, (c, d) YZ-2 and (e, f) YZ-3 comparing the optical properties in CH_2CI_2 (black) and 2-MeTHF (red) solutions. The dashed lines are the monoexponential fittings for fluorescence decay lifetimes of CH_2CI_2 (green) and 2-MeTHF (blue) solutions

YZ	YZ (wt. %)	$\lambda_{ABS-max}{}^{b}$	λ_{PL-max}^{c}	h ^d	λ_p^e	$\alpha[\lambda_p]^f$	$t_p[\lambda_p]^g$	$\lambda_{ASE}{}^{h}$	FWHM ASE ⁱ	E th-ASE ^j	I _{th-ASE} j
derivative	in PS ^a	(nm)	(nm)	(nm)	(nm)	(×10 ³ cm ⁻¹)	(ns)	(nm)	(nm)	(mJ/cm²)	(kW/cm²)
01	1	<u>334</u> , 366	<u>502</u> , 535	512	355	0.5	5.7				
	3	<u>334</u> , 366	<u>505</u> , 537	451	355	1.9	5.7				
	6	<u>334</u> , 366	<u>513</u> , 532	457	355	3.7	5.7				
02	1	373, <u>418</u>	<u>574</u> , 619, 673	632	418	0.5	3.7				
	3	373, <u>418</u>	<u>574</u> , 619, 673	550	418	1.6	3.7				
	6	373, <u>418</u>	<u>574</u> , 619, 673	572	418	3.1	3.7				
03	0.5	328, <u>458</u>	<u>648</u> , 706	511	458	0.6	4.0				
	0.75	328, <u>458</u>	<u>648</u> , 706	555	458	1.0	4.0				
	1	328, <u>458</u>	<u>648</u> , 706	580	458	1.3	4.0	648	11	14.5	3600
	1.5	328, <u>458</u>	<u>648</u> , 706	572	458	2.0	4.0				
	2	328, <u>458</u>	<u>648</u> , 706	522	458	2.7	4.0				
	3	328, <u>458</u>	<u>648</u> , 706	583	458	4.7	4.0				

Table S2. Summary of the photophysical data of the YZ-n containing PS films.

^a Error ~0.1%

^b Peak absorption wavelengths (maximum absorption peak is underlined)

^c Peak photoluminescence wavelengths (maximum photoluminescence peak is underlined)

^d Film thickness (error ~2%)

^e Pump wavelength

^f Absorption coefficient at λ_p (error ~2%)

^g Pump pulse width at λ_p

^h ASE wavelength (error is ± 0.5 nm)

ⁱ ASE linewidth (error is ± 1 nm), defined as the full width at half maximum, FWHM, well above the threshold.

^j ASE threshold (error ~20%)

Fig. S2. Transient decays of fs-TAS of (a) YZ-1, (b) YZ-2 and (c) YZ-3 in a 2 Me-THF solution. Measurements were obtained exciting at 490, 560 and 640 nm for YZ-1, YZ-2 and YZ-3 with a power of 0.25 mW.

Fig. S3. Decays obtained by global analysis of the fs-TAS data from Fig. 4 for (a) YZ-1, (b) YZ-2 and (c) YZ-3.

Fig. S4. Microsecond transient absorption spectroscopy of (a) YZ-1 and (b) YZ-2 in a 2-MeTHF solution. Transient decays at the absorption maxima of (c) YZ-1 and (d) YZ-2 and their oxygen dependence. Measurements were obtained exciting at 355 and 532 nm for YZ-1 and YZ-2 nm, respectively, at 15 mJ.

Fig. S5. Comparison of the spectra obtained by μ s-TAS and ps-TAS for (a) YZ-1 and (b) YZ-2.

Fig. S6. Femtosecond transient absorption spectroscopy results of (a) YZ-1, (b) YZ-2 and (c) YZ-3 in a 1% solid matrix. Transient data was obtained exciting at 490, 560 and 640 nm for YZ-1, YZ-2 and YZ-3 with a power of 0.25 mW.

Fig. S7. Calculated HOMO al LUMO levels and the electronic distribution in vacuum of (a) YZ-1, (b) YZ-2 and (c) YZ-3. The geometry optimization was carried out at B3LYP/6-31G** level of theory, whereas the vertical transitions were performed with TD-DFT calculations at B3LYP/6-31G level of theory.