Strain-induced tunable valley polarization and topological phase transition in SVSiN₂ monolayer

Yunxi Qi, Can Yao and Jun Zhao*

Jiangsu Provincial Engineering Research Center of Low Dimensional Physics and New Energy & School of Science, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China

Hui Zeng[†]

School of Microelectronics, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China[‡]

Authors to whom correspondence should be addressed: <u>zhaojun@njupt.edu.cn</u> (Jun Zhao) and zenghui@njust.edu.cn (Hui Zeng)

Table S1 The lattice constant of the $SVSiN_2$ monolayer, V-N bond length R_{V-N} , V-S bond length R_{V-S} , layer thickness h, and PBE bandgap without SOC.

$SVSiN_2$	<i>a=b</i> (Å)	R_{V-N} (Å)	R_{V-S} (Å)	h (Å)	E _g (eV)
without dipole correction	2.952	2.02	2.34	4.95	0.53
With dipole correction	2.952	2.02	2.33	4.94	0.52

Fig S1. The (a) local magnetic moment of the V ions, and (b) the energy difference between AFM and FM configurations of the $SVSiN_2$ monolayer with respect to the different U_{eff} values.

Fig S2. Band structures of the $SVSiN_2$ monolayer by using different U_{eff} values and by using HSE06 hybrid functional.

Fig S3. Projected density of state of the $SVSiN_2$ monolayer by using different U_{eff} values and by using HSE06 hybrid functional.

Fig S4. Magnetic crystal anisotropy (MCA) performance of the $SVSiN_2$ monolayer under different *k*-grids.

Fig. S5 The E_{MCA} of the SVSiN₂ monolayer as a function of different U_{eff} values.

Fig S6. The orbital-resolved spin orbit coupling (SOC) energy difference of V atoms in the SVSiN₂ monolayer, where (a) is the V-*d* orbital, and (b) is the V-*p* orbital. All orbitals are beneficial for in-plane MCA.

Fig S7. The band structure of the SVSiN₂ monolayer calculated by first principles (solid red line) and tight-binding method implemented by WANNIER90 (green dotted line).

Fig S8. The band structures of the $SVSiN_2$ monolayer under different in-plane biaxial strains.

Fig S9. The projected band structures of the $SVSiN_2$ monolayer under -3% and 3% biaxial strain.

Fig S10. The band structures of the $SVSiN_2$ monolayer under different vertical electric fields.