Application of deep learning to support peak picking during non-target high

resolution mass spectrometry in environmental research

Kate Mottershead^a & Thomas H Miller^{b*}

^aDepartment of Analytical, Environmental & Forensic Sciences, School of Population

Health & Environmental Sciences, Faculty of Life Sciences and Medicine, King's

College London, 150 Stamford Street, London SE1 9NH, UK

^bCentre for Pollution Research & Policy, Department of Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK

Table of Contents

S1.0 Manual labelling of ROI files	.S3
S2.0 ROI image feature extraction	S4
S3.0 CNN architecture	S4
S4.0 CNN prediction examples	.S5
S5.0 CNN external test set misclassification	S6

List of Tables

Table S1. CNN architecture of the pre-trained models downloaded from ImageNet

Table S2. Misclassification of ROIs extracted from Fiorini et al., 2020 by the optimisedCNN model.

List of Figures

Figure S1. Several criteria followed during the manual labelling of ROIs into respective class labels; Type I, Type II or Type III. Low intensity peaks (1,000 to 10,000) were mainly classified at Type III, unless there were very clear cases that there was no signal (Type II).

Figure S2. The ROIs after feature extraction by the Keras image processing applications; (i) Mobile Net and (iii) Xception

Figure S3. ROI example files classified by the CNN and the respective probability of the prediction.

Figure S4: ROI example files for each class (a) type I, (b) type II and (c) type III

Figure S5. Misclassified ROIs from Fiorini et al., 2020.

S1.0 Manual labelling of ROI files

Figure S1. Several criteria followed during the manual labelling of ROIs into respective class labels; Type I, Type II or Type III. Low intensity peaks (1,000 to 10,000) were mainly classified at Type III, unless there were very clear cases that there was no signal (Type II).

S2.0 ROI image feature extraction

Figure S2. Example ROIs after feature extraction by the Keras image processing applications; (i) Mobile Net (ii) Xception.

S3.0 CNN architecture

Table S1. CNN architecture of the pre-trained models downloaded from ImageNet

Model	Туре	No.	No. Parameters	Keras Top-5	
		Layers	(trainable)	Accuracy	
VGG16	Sequential	23	138,357,544	0.001	
			(138,357,544)	0.901	
Xception	Functional	126	22,910,489 (20,813,099)	0.945	
MobileNet	Functional	88	4,253,864 (4,234,979)	0.895	

S4.0 CNN prediction examples

Figure S3. ROI example files classified by the CNN and the respective probability of the prediction.

Figure S4: ROI example files for each class (a) type I, (b) type II and (c) type III

S5.0 CNN external test set misclassification

True class	Feature	Type I	Type II	Type III	Predicted Class
Type II	1FT0582	0.562	0.142	0.295	Туре І
Type I	1FT0302	0.418	0.579	0.003	Type II
Type I	1FT0427	0.333	0.014	0.653	Type III
Type I	1FT0520	0.336	0.661	0.003	Type II
Type I	1FT0531	0.289	0.711	0	Type II
Type I	1FT0604	0.201	0.029	0.77	Type III

Table S2. Misclassification of ROIs extracted from Fiorini et al., 2020 by the optimised CNN model.

Figure S5. Misclassified ROIs from Fiorini et al., 2020.