Supplementary information for: Life Cycle Direct Land Use by the Natural Gas-Fired Electricity in the US Western Interconnection

Authors and Affiliations: Tao Dai1, Jeya M Jose2, Vishal M Patel2, Sarah M Jordaan1

1. School of Advanced International Studies, Johns Hopkins University, Washington, DC, 20036, USA.

2. Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA

*Corresponding author: Sarah M Jordaan, Ph.D., Email: sarahjordaan@jhu.edu

Supplementary Figures

Figure S2. Model performance

Figure S3. Study area and clustering results

Figure S4. A comparison of land occupation of annotated results, predicted results, and adjusted results.

Figure S5. Land use by processing plants tends to proportional to their processing capacity

Figure S6. Land use by power plants tends to proportional to their installed capacity

Figure S7. A comparison of amount of lifetime production among well types and data sources

Supplementary Tables

Life Cycle Stage	Land Use Elements	N	Approach	Data Source
Production	Well pads; Access Road	100009	Deep Learning	Enverus*
Gathering	Gathering pipelines	100009	Deep Learning Results and Existing data	Enverus
Processing	Processing Plants	173	Manual Delineation	EIA**
Transmission	Transmission pipelines	174	Estimated by creating a buffer to the linear shapefiles	EIA
Use In Power Plants	Power Plants	2629	Manual Delineation	EIA

Table S1. Life cycle stages, quantification approaches, and data source.

*Enverus | Creating the future of energy together., https://www.enverus.com/, (accessed 2 August 2021)

** U.S. Energy Information Administration, Layer Information for Interactive State Maps, https://www.eia.gov/maps/layer_info-m.php, (accessed 7 July 2022)

Table S2. Manual determination of results quality

Category	Score	Notes		
Road	5	Match the boundary of road; identified only land of interest; continuity is good		
	3	Match the boundary of road; Reasonable continuity. Wells in agricultural area automatically obtain		
		a "A" since road will be excluded.		
	0	lo road is identified or road identified are not of interest		
Pad	5	Aatch the boundary of production pads		
	3	Only partial of the production pad has been identified.		
	0	Pad are missing (potential reasons: pad is small or recovered; segmentation performance is not		
		good)		
Pad and well matching	5	Wells are located within the identified pad area		
	3	Wells are near the pad area and is within the Thiessen polygon		
	0	No connection can be found between pad and well. In areas of high production intensity,		

Table S3. Uncertainty Sources

Step		Туре			
Goal and	System boun	Scenario			
Scope	transmission				
Definition	Images are fr	Scenario			
		Extent	Use distance to well interest (km) to determine area of interest	Scopario	
			which may cause truncation error or neglect land co-use	SCELIGITO	
			Allocation using Thiessen polygon	Scenario	
			Revised the predicted area based on performance matrix per land	Parameter	
	Production		cover type		
		Amount	Accuracy of model from Patzek et al. (2015) (for directional wells)	Scenario	
			Subset of vertical production data may overestimate the production	Scenario	
			from vertical wells		
Inventory Assessment			Lifespan of directional wells (year)	Parameter	
	Gathering	Extent	Using simplified road network as a proxy gathering network	Scenario	
			Deep learning model performance	Parameter	
			Use constant value from literature for pipeline width	Parameter	
		Amount	Lifetime production	Parameter	
	Processing	Amount	Lifetime of service	Parameter	
		Area	Manual delineation may fail to identify land co-use	Scenario	
	Transmissio	Extent	Use constant value from literature for pipeline width	Parameter	
	n	Amount	Pipelines lifespan (year)	Parameter	
	Use in	Extent	Manual delineation may fail to identify land co-use	Scenario	
	power plants	Amount	Power plant lifespan (year)	Parameter	

	Table S4. Sensitivity analysis of key parameters				
Parameter	Unit	Range	Stage	Estimation [m ² /MWh]	Impact (Ratio)*
Performance of deep learning model-	Quantile	[100, 25]	Production	[0.026, 0.046]	[↓20.5%, ↑40.4%]
			Gathering	[0.033, 0.053]	[↓23.1%, ↑24.1%]
F1/F2/F3*			Life cycle	[0.100 ,0.158]	[↓20.3, ↑26.3]
Lifernan of directional	year	[10, 25, 40]	Production	[0.032, 0.035]	[^6.9%, ↓3.0%]
Litespan of directional			Gathering	[0.042, 0.045]	[[↑] 5.6%, [↓] 2.8%]
Wells			Life cycle	[0.120, 0.128]	[^2.2%, ↓-4.4%]
Width of Gathering	m	[5, 10, 20]	Gathering	[0.023, 0.0787]	[↓46.7%, ↑83.3%]
Pipeline (Vertical)			Life cycle	[0.100, 0.166]	[↓20.8, ↑32.1%]
Width of Gathering	-	m [10, 30, 50]	Gathering	[0.036, 0.045]	[↓12.4, ↑5.2%]
Pipeline (Directional)	111		Life cycle	[0.118, 0.126]	[↓5.8%, ↑1.2%]
Lifetime of service of processing plants	year	[20, 30, 40]	Processing	[<0.001, 0.001]	[↑50%, ↓25%]
			Life cycle	[0.122, 0.126]	[↑1.5%, ↓3.2%]
Width of transmission pipelines	m	[20, 30, 50]	Transmission	[<0.001, <0.001]	[↓33.3%,↑66.6%]
			Life cycle	[0.123, 0.126]	[↓2%,↑0.8%]
Lifespan of	year	[20, 30, 50]	Transmission	[<0.001, <0.001]	[↑ 50.0%, ↓40.0%]
transmission pipelines			Life cycle	[0.126, 0.126]	[↑0.5%, ↓0.0%]
Lifespan of power	year	[20, 30,50]	Power Plant	[0.006, 0.014]	[↑50.0%, ↓40.0%
plants (Year)			Life cycle	[0.124, 0.126]	[↑1.6% _, ↓1.2%]

*Estimations are medians. In sensitivity analysis, we discarded the visualization performance indicator for simplification. *Ratio is defined as: (lower/upper estimation- current estimation)/current estimation. Down-arrow indicates decrease (negative ratio) and up-

arrow indicates increase (positive ratio).

Table S5. Land Transformation of Natural Gas Production \by State in Non-Agricultural Area (Political Boundary)

State	25 th Percentile	50 th Percentile	75 th Percentile	N
California	0.015	0.043	0.190	196
Colorado	0.021	0.053	0.161	3827
Montana	0.010	0.031	0.065	57
New Mexico	0.013	0.027	0.062	12096
Utah	0.024	0.062	0.220	1626
Wyoming	0.013	0.031	0.096	4019

Table S6. Land Transformation of Natural Gas Production by Production Play in Non-Agricultural Area (Natural Boundary)

State	25 th Percentile	50 th Percentile	75 th Percentile	N
GREEN RIVER	0.013	0.030	0.092	3692
MANCOS	0.013	0.027	0.063	12659
NIOBRARA	0.049	0.117	0.328	635
PICEANCE	0.018	0.047	0.139	1855
POWDER RIVER	0.022	0.046	0.102	128
UINTA	0.026	0.068	0.233	1267