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Section 1. Plastics Database 

Table S1. Database sample descriptions and totals. Overview of database plastics used in this 

study. Samples are organized by their resin code, appearance, and color. Images depict the 

color and transparency for each type of plastic object. **Not all individual plastics samples are 

shown in Table S1. Only a representative image is shown for clarity. Full image library may be 

available upon request** 

Plastic Type Object Color Total Image 

HDPE Bottle 

Black/dark 2 
 

Blue 1 
 

Brown 2 
 

Green 1 
 

Grey 1 
 

Opaque 19 
 

Purple 1 
 

Red 1 
 



   
 

White 51 
 

Yellow 3 
 

Container/cup
/bowl/plate 

Opaque 1 
 

White 3 
 

Film/wrapping
/bag 

Clear 45 
 

Opaque 6 
 

White 6 
 

Lid/cap 

Black/dark 1 
 

Blue 1 
 

Clear 1 
 

Opaque 2 
 

Orange 5 
 



   
 

White 14 
 

LDPE 

Bottle Yellow 4 
 

Container/cup
/bowl/plate Red 1 

 

Film/wrapping
/bag 

Brown 1 
 

Clear 112 
 

Green 2 
 

Greenish 
blue 11 

 

Opaque 2 
 

Reddish 
orange 1 

 

White 26 
 

Yellow 1 
 

Lid/cap Clear 3 
 



   
 

White 1 
 

Yellow 1 
 

PET 

Bottle 

Brown 1 
 

Clear 61 
 

White 1 
 

Container/cup
/bowl/plate 

Blue 1 
 

Clear 72 
 

Hard 
packaging 
mold Clear 8 

 

Lid/cap Clear 23 
 

PP 

Bottle 

Opaque 1 
 

Orange 3 
 

Container/cup
/bowl/plate Black/dark 23 

 



   
 

Clear 29 
 

Opaque 17 
 

White 61 
 

Film/wrapping
/bag Opaque 1 

 

Hard 
packaging 
mold Black/dark 1 

 

Lid/cap 

Blue 8 
 

Clear 11 
 

Green 2 
 

Opaque 2 
 

Red 3 
 

White 5 
 

PS 
Container/cup
/bowl/plate Black/dark 15 

 



   
 

Blue 2 
 

Brown 15 
 

Clear 21 
 

Green 15 
 

Opaque 16 
 

Pink 15 
 

Red 10 
 

White 40 
 

Flat 
shape/eating 
utensil 

Clear 3 
 

White 5 
 

Hard 
packaging 
mold 

Blue 1 
 

Orange 1 
 



   
 

Lid/cap 

Black/dark 3 
 

Brown 4 
 

Opaque 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Section 2. ATR-FTIR Spectra 



   
 

FigureS1a-e: ATR-FTIR spectra corresponding to machine learning results in Table 1 and Figure 

2. These spectra are most reflective of the true chemical composition of mixed postconsumer 

plastic waste. No baseline corrections (accounting for CO2 or H2O), normalizations, or other 

manipulations were performed.  

 

Figure S1a. ATR-FTIR spectra of #1 PET postconsumer plastics (red) and a virgin polymer for 

reference (black). 501 spectra are shown. 

 

 

Fig. S1b ATR-FTIR spectra of #2 HDPE postconsumer plastics (red) and a virgin polymer for 

reference (black). 501 spectra are shown. 



   
 

 

 

 

 

 

 

 

Fig. S1c ATR-FTIR spectra of #4 LDPE postconsumer plastics (red) and a virgin polymer for 

reference (black). 501 spectra are shown. 



   
 

 

 

 

 

 

 

 

 



   
 

Fig. S1d ATR-FTIR spectra of #5 PP postconsumer plastics (red) and a virgin polymer for 

reference (black). 501 spectra are shown.

 

 

 

 

 

 

 

 



   
 

Fig. S1e ATR-FTIR spectra of #6 PS postconsumer plastics (red) and a virgin polymer for 

reference (black). 501 spectra are shown. 

 

 

 

 

 

 

 

 



   
 

Fig. S2 Processed spectra (Methods 2.2) of MIR database plastics. Plastic waste (red). Virgin 

reference polymer (black). The x-axis is split for observation of the regions-of-interest. Only 

1/3rd of the database spectra are shown for clarity. 

 

 

 

 

 

 

 



   
 

Section 3. Machine Learning 

IMPORTANT DEFINITIONS: 

“Unprocessed Spectra” = Spectra were acquired from 4000 to 650 cm-1 as percent 

transmittance spectra without baseline correction (10 iterations, 64 baseline points, and 

excluded CO2 bands), normalization, or conversion to Absorbance. These acquisitions provide 

the most realistic glimpse of chemical heterogeneity within mixed postconsumer plastics 

because they include O-H and C-O mid-infrared bands corresponding to not only water and 

carbon dioxide, respectively, but also polymer additives.  

 

“Processed Spectra” = Spectra were acquired from 4000 to 650 cm-1 and processed using OPUS 

7.5. Each spectrum contains 3474 data points, where each point represents the intensity in 

percent transmittance (Fig. 2) or absorbance units (Fig. 4) at a given wavenumber. The raw 

spectra were processed by converting from percent transmittance to absorbance, applying a 

concave rubberband baseline correction (10 iterations, 64 baseline points, and excluded CO2 

bands), and performing a minimum/maximum normalization.  These spectra are the “cleanest” 

in this study, but it should be understood that achieving results using this processing method 

would contribute additional mathematical steps in a real-world, practical mid-infrared sorting 

technology (e.g., adding additional time and computational load to the process). 

 

 

 



   
 

3a. Autoencoders  

This study’s dataset consists of 2,505 samples and each sample has 3,474 features. We have 

used the Multilayer Perceptron autoencoder model. We have used the Keras functional API for 

defining the model. The encoder is defined to have 2 hidden layers, the first layer has two times 

the number of inputs (6,948) and the second layer with the same number of inputs (3,474). The 

bottleneck layer has the same number of inputs (3,474). The decoder has a similar structure in 

reverse, it has 2 hidden layers, the first layer has the number of inputs in the dataset (3,474) 

and the second layer has double the inputs (6,948). The output layer will have the same number 

of output nodes as the input data which is 3,474. Linear activation is used to output numeric 

values. Batch normalization and leaky ReLU activation is used by the model for learning. Adam 

optimizer and mean squared error loss function are used. 

 

 

 

 

 

 

 

 

 

 



   
 

Fig. S3 Learning curve of autoencoder model applied to full MIR (4000-650 cm-1) of all 5 plastic 

types. Y-axis is loss that approaches zero over increased epochs (x-axis). Model shows sufficient 

fit for reconstruction. 

 

 

i.  ML Autoencoders Results using Unprocessed Spectra 

 See manuscript Table 1. and Fig. 3 

 

 

 

 

 

 



   
 

ii. ML Autoencoders Results using Processed Spectra 

 

Table S1b Machine learning performance of spectra pre-processed using autoencoders (Fig. S2) 

Algorithm Full Mid-Infrared 

(4000-650 cm-1) 

C-H Stretching 

(2990-2820 cm-1)  

 

Fingerprint 

(1500-650 cm-1)  

 

Accuracy (%)  

 

τ (ms)  

 

Accuracy (%)  

 

τ (ms)  

 

Accuracy (%)  

 

τ (ms)  

 

RF 100 125.807 100 70.001 100 53.144 

KNN 98.842 3548.462  97.684 428.233 99.161 876.026 

SVM 95.807 0.058 93.450 0.050 94.728 0.057 

LR 96.526 99.298 95.248 5.424 96.366 26.249 

 

 

 

 

 

 

 

 

 



   
 

Figure S4 Confusion matrices of ML models applied across five plastic types and the mid-

infrared regions-of-interest. True and predicted label accuracies are highlighted in blue along 

the diagonal of each confusion matrix. Trained data were processed using the methods in 2.2 

and 2.3 (Figure S2). 

 

 

 

 



   
 

3b. Principal Component Analysis (PCA) was evaluated as a pre-processing technique on the 

spectral dataset and Random Forest algorithm was applied producing an accuracy of 98%. 

 

3c. Standard Machine Learning Classifiers (without Autoencoders) 

i. 1D-CNN Implementation to the MIR Plastics Database 

Convolutional neural networks (CNNs) are deep learning (DL) methods that have become of 

interest to the growing plastics recycling research community for their extensive learning 

architecture and ability to extract features from images for classification.1-3 One-dimensional 

CNNs were applied to this study’s database to assess the viability of DL techniques for plastic 

waste sorting. CNNs are traditionally used for high dimensional dataset such as images, whereas 

this dataset consists of 1-dimensional MIR spectra. Additionally, the performance of DL improves 

over increased dataset sizes. Relative to the size of conventional image datasets, the 

performance of DL was surpassed by the standard classifiers in this study (Table S5 and Figure 

S2). Future academic work should assess real-world plastics sorting systems using both standard 

classifiers and DL methods, as optimized sorting technologies that are later developed for 

industrial purposes may utilize a combination of automated ML schemes depending on the 

sample-of-interest and application.  

Using a one-dimensional CNN (1D-CNN) architecture, spectral features were extracted for 

classification. The MIR spectra are 1-dimensional data files consisting of 3474 features and are 

converted to a 3474-element vector of features. The 1D-CNN architecture consists of 64 filters 

with kernel size of 3. These filters are convolved with the input vector to produce a scalar value 

which indicates the presence or absence of the pattern the filter is identifying. ReLu activation 



   
 

function is a nonlinear function used to transform the summed weighted input from the node 

into the activation of the node or output for that input. Dropout of 0.5 is selected to drop the 

randomly selected neurons during training. Max pooling downsampled the input by calculating 

the maximum value for patches of feature maps thus reducing the dimensionality of the vector. 

To tune the performance of the model, the hyperparameters of the 1D-CNN architecture were 

applied according to the sklearn Application Programming Interface. 

 
 
 
 
 

ii. ML Results using Unprocessed Spectra 

Table S1c Machine learning performance of unprocessed spectra. Spectra corresponding to 

these results are found in Figure S1a-e. 

 4000 – 650 cm-1 2990 – 2820 cm-1 1500 – 650 cm-1 

Accuracy 
(%) 

τ (ms) Accuracy 
(%) 

τ (ms) Accuracy 
(%) 

τ (ms) 

RF 90.615 61.58 69.848 67.23 79.673 51.80 

KNN 82.907 2137.97 83.546 242.20 81.110 795.92 

SVM 79.633 1300 76.757 282.71 96.006 419.78 

LR 96.126 141.27 89.297 24.44 94.369 29.29 

1D-CNN 94.424 12370.5 88.947 4558.3 87.679 5681.1 



   
 

 Figure S5 Confusion matrices of ML models applied across five plastic types and the mid-

infrared regions-of-interest. True and predicted label accuracies are highlighted in blue along 

the diagonal of each confusion matrix (Figure S1a-e).  

 

 

 



   
 

iii. ML Results using Processed Spectra 

Table S1d Classification accuracies and prediction times for mid-infrared spectral regions. 

Spectra were processed according to procedures specified in 2.2 and 2.3 (Figure S2). 

 
4000 – 650 cm-1 

2990 – 2820 cm-1 1500 – 650 cm-1 

Accuracy (%) τ (ms) Accuracy (%) τ (ms) Accuracy 
(%) 

τ (ms) 

RF 98.60 17.33 97.41 16.13 98.00 17.40 

KNN 97.34 25.97 96.01  8.070 98.40 11.61 

SVM 98.60 1.470 94.01 0.9400 96.41 0.9200 

LR 97.00 0.9600 93.01 0.4400 95.41 0.4600 

1D-CNN 96.90 (+/- 1.39) 6.000 91.73 (+/- 2.95) 2.000 92.08 2.000 

 

 

 

 

 

 

 

 

 

 



   
 

Figure S6 Confusion matrices of ML models applied across five plastic types. True and predicted 

label accuracies are highlighted in blue along the diagonal of each confusion matrix. 

 

 

 

Section 4. HDPE and LDPE Classification 



   
 

i. Table S1e and Figure S7: Unprocessed MIR spectra 

 

Table S1e Machine learning performance of unprocessed (percent transmittance, Fig. 3) HDPE 

and LDPE spectra using autoencoders. 

Algorithm Full Mid-Infrared 

(4000-650 cm-1) 

C-H Stretching 

(2990-2820 cm-1)  

 

Fingerprint 

(1500-650 cm-1)  

 

Accuracy (%)  

 

τ (ms)  

 

Accuracy (%)  

 

τ (ms)  

 

Accuracy (%)  

 

τ (ms)  

 

RF 100 30.694 100 18.095 100 18.067 

KNN 97.602 552.581 97.602 152.058 97.502 116.718 

SVM 97.802 0.038 96.503 0.039 97.103 0.043 

LR 97.003 7.179 96.903 2.385 97.302 2.372 

 

 

 

 

 

 

 



   
 

Figure S7 Confusion matrices of ML models applied to HDPE and LDPE postconsumer plastics 

MIR spectra. True and predicted label accuracies are highlighted in blue along the diagonal of 

each confusion matrix. 

 

 

 

 

 

 



   
 

Section 5. Black Plastics Classification 

 

Figure S8 Confusion matrix for black plastics. Accuracy is 100% using Random Forest without 

any pre-processing technique. 

 

 

Figure S9 Confusion matrix for black plastics. Accuracy is 99.779% using Random Forest 

without any pre-processing technique. 

 



   
 

Section 6. References 

(1) Zinchik, S.; Jiang, S.; Friis, S.; Long, F.; Høgstedt, L.; Zavala, V. M.; Bar-Ziv, E. Accurate 

Characterization of Mixed Plastic Waste Using Machine Learning and Fast Infrared 

Spectroscopy. ACS Sustainable Chem. Eng. 2021, 9 (42), 14143–14151. 

https://doi.org/10.1021/acssuschemeng.1c04281. 

(2) Zhou, K.; Oh, S.-K.; Pedrycz, W.; Qiu, J.; Fu, Z.; Ryu, B.-G. Design of Data Feature-Driven 

1D/2D Convolutional Neural Networks Classifier for Recycling Black Plastic Wastes 

through Laser Spectroscopy. Advanced Engineering Informatics 2022, 53, 101695. 

https://doi.org/10.1016/j.aei.2022.101695. 

(3) Long, F.; Jiang, S.; Adekunle, A. G.; M Zavala, V.; Bar-Ziv, E. Online Characterization of 

Mixed Plastic Waste Using Machine Learning and Mid-Infrared Spectroscopy. ACS 

Sustainable Chem. Eng. 2022, 10 (48), 16064–16069. 

https://doi.org/10.1021/acssuschemeng.2c06052. 

(4) Signoret, C.; Caro-Bretelle, A.-S.; Lopez-Cuesta, J.-M.; Ienny, P.; Perrin, D. Alterations of 

plastics spectra in MIR and the potential impacts on identification towards recycling. 

Resources, Conservation and Recycling 2020, 161, 104980. DOI: 

https://doi.org/10.1016/j.resconrec.2020.104980. 

 

https://doi.org/10.1021/acssuschemeng.1c04281
https://doi.org/10.1016/j.aei.2022.101695
https://doi.org/10.1021/acssuschemeng.2c06052
https://doi.org/10.1016/j.resconrec.2020.104980

