Electronic Supplementary Material (ESI) for Environmental Science: Advances. This journal is © The Royal Society of Chemistry 2023

Exploring Regression-based QSTR and i-QSTR Modeling for Ecotoxicity Prediction of Diverse Pesticides on Multiple Avian Species

Trina Podder¹, Ankur Kumar¹, Arnab Bhattacharjee¹, Probir Kumar Ojha^{1*}

¹Drug Discovery and Development (DDD) Laboratory,

Department of Pharmaceutical Technology, Jadavpur University,

Kolkata 700032, India

*Corresponding author: P K Ojha, Email: probirojha@yahoo.co.in, Phone: +91 8777677004;

Materials and methods

Definition of different statistical parameters

$$R^{2} = 1 - \frac{\Sigma (Y_{obs(train)} - Y_{calc(train)})^{2}}{\Sigma (Y_{obs(train)} - \overline{Y}_{train})^{2}}$$

$$R_{adj}^2 = \frac{(n-1) \times R^2 - p}{(n-p-1)}$$

$$RMSE_c = \sqrt{\frac{\left(\Sigma Y_{obs(train)} - Y_{calc(train)}\right)^2}{n}}$$

$$Q_{L00}^{2} = 1 - \frac{\Sigma (Y_{obs(train)} - Y_{calc(train)})^{2}}{\Sigma (Y_{obs(train)} - \overline{Y}_{train})^{2}}$$

Where, $R^2 = \text{Co-efficient of determination}$

$$R_{adj}^{2} =$$
 Adjusted co-efficient of determination

$$Q_{L00}^2 = \frac{2}{\text{Cross-validated correlation coefficient}}$$

 $Y_{obs(train)} = _{Observed response value of training set}$

 $Y_{calc(train)} = \frac{1}{\text{Calculated response value of training set}}$

 \overline{Y}_{train} Average of all response of training set

 $RMSE_c =$ Root mean square errors of calibration

n = Number of compounds

p = Number of descriptors

$$Q_{F1}^{2} = 1 - \frac{\Sigma (Y_{obs(test)} - Y_{calc(test)})^{2}}{\Sigma (Y_{obs(test)} - \overline{Y}_{train})^{2}}$$

$$Q_{F2}^{2} = 1 - \frac{\Sigma (Y_{obs(test)} - Y_{calc(test)})^{2}}{\Sigma (Y_{obs(test)} - \overline{Y}_{test})^{2}}$$

$$r_m^2 = r^2 \times \left(1 - \sqrt{(r^2 - r_0^2)}\right)$$

$$r'_{m}^{2} = r^{2} \times (1 - \sqrt{(r^{2} - r'_{0}^{2})})$$

$$\bar{r}_m^2 = \frac{(r_m^2 + r_m'^2)}{2}$$

$$\Delta r_m^2 = |r_m^2 - r_m^2|$$

 $Y_{obs(test)} = Observed response value of training set$

 $Y_{calc(test)} =$ Calculated response value of training set

 \overline{Y}_{train} Average of all response of training set

 \overline{Y}_{test} Average of all response of test set

Applicability domain: Standardization technique

The equation to calculate AD is:

$$S_{ki} = \frac{|X_{ki} - X_i|}{\sigma X_i}$$

Where, $k=1, 2, 3 \dots nComp$ (here, nComp = total number of compounds)

 $S_{ki}\!\!=\!Standardized$ descriptor i for compound k (from the training or test set)

 X_{ki} = original descriptor i for compound k (from the training or test set)

 $X_{ki} = \overline{\text{mean}}$ value of the descriptor

 X_i = for the training set compounds only

σX_i=standard deviation of the descriptor

Xi for the training set compounds only

The standardization approach of applicability domain is based on the ideal data distribution; 99.7% of the compounds would stay within the range of mean \pm 3 standard deviations (SDs). As a result, this range (i.e., mean \pm 3SDs) is considered as the area of the majority of the training set compounds. Outside this area, a compound is examined as a diverse from the rest of the compounds. So, one should compute the maximum Si(k) value ([Si]max(k)) for the compound k. If the SD value for descriptor i of compound k (Ski) is greater than 3 then the compound is an X-outlier (if it is in the training set) or outside the AD (if it is in the test set).

Results and discussion

*Here, S denotes supporting information and number denotes to corresponding table.

Results and discussion

Table S1. Mechanistic interpretation and definition of descriptors related to electronegativity: BQ (Bobwhite quail) oral pLD₅₀

Sl no	Descriptors	Class	Definition of	Contribution	Fragments	Mechanistic interpretation
1	P-117	Atom-centered fragments	Presence of phosphate group	Positive	X3-P=X (X=O)	Presence of phosphate group makes pesticides more toxic
2	nCXr	Functional group count	Number of electro-negative atom (X) on ring C (sp3)	Positive	(X= Cl, O, S, F etc.)	Presence of this fragment makes pesticides more toxic
3	F04[Br-Br]	2D atom pair	Frequency of Br-Br at topological distance 4	Positive	Br	Presence of bromine atoms make pesticides more toxic

4	F06[S-C1]	2D atom pair	Frequency of S-Cl at topological distance 6	Positive	S	Presence of this fragment makes pesticides more toxic
5	F02[O-O]	2D atom pair	Frequency of O-O at topological distance 2	Positive		Presence of oxygen atoms make pesticides more toxic

Table S2. Mechanistic interpretation and definition of descriptors related to hydrophilicity: BQ (Bobwhite quail) oral pLD₅₀

S1	Descriptors	Class	Definition	Contribution	Fragments	Mechanistic interpretation
no			of			
			descriptors			
1	B02 [N-N]	2D atom pair	Presence/absence of N - N at topological distance 2	Negative	<u></u>	Attachment of this fragment in ring system makes pesticides non-toxic

2	F05[S-P]	2D atom pair	Frequency of S-P at topological distance 5	Negative	 Presence of this fragment makes pesticides non-toxic
3	F09[C-P]	2D atom pair	Frequency of C-P at topological distance 9	Negative	Presence of this fragment makes pesticides non-toxic

 $\textbf{Table S3.} \ \ \textbf{Mechanistic interpretation and definition of descriptors related to } \ \ \textbf{hydrophobicity:} \ \ \textbf{BQ} \ (\textbf{Bobwhite quail}) \ \ \textbf{oral pLD}_{50}$

S1 no	Descriptors	Class	Definition of descriptors	Contribution	Fragments	Mechanistic interpretation
1	X2A	Connectivity indices	Average connectivity index of order 2	Negative	Size & Shape	Increasing value of this descriptor makes the pesticides non-toxic
2	minssCH2	Minimum atom- type E-state	Presence of methylene (-CH ₂ -) groups in aliphatic chains	Negative	-CH ₂ -	Increasing value of this descriptor makes the pesticides non-toxic
3	X4v	Connectivity indices	Valence connectivity index of order	Positive	Size & Shape	Increasing value of this descriptor makes the pesticides toxic

Table S4. Mechanistic interpretation and definition of descriptors related to electronegativity: MD (Mallard duck) oral pLD_{50}

Sl	Descriptors	Class	Definition	Contribution	Fragments	Mechanistic interpretation
no			of			
			descriptors			
1	nRSR	Functional group count	Number of sulfide groups present in a compound	Positive	Number of Sulfur	Presence of sulfide group makes pesticides more toxic
2	F02[O-O]	2D atom pair	Frequency of O-O at topological distance 2	Positive	-	Presence of this fragment makes pesticides more toxic
3	B01[O-P]	2D atom pair	Presence/ Absence of O-P at topological distance 1	Positive	0	Presence of this group make pesticides more toxic

4	B05[O-S]	2D atom pair	Presence/ Absence of O-S at topological distance 5	Positive	°	Presence of this fragment makes pesticides more toxic

Table S5. Mechanistic interpretation and definition of descriptors related to hydrophilicity: MD (Mallard duck) oral pLD₅₀

Sl	Descriptors	Class	Definition	Contribution	Fragments	Mechanistic interpretation
no			of			
			descriptors			

1	F10[C-S]	2D atom pair	Frequency of C-S at topological distance 10	Negative		Attachment of this fragment in ring system makes pesticides non-toxic
2	F08[C-S]	2D atom pair	Frequency of C-S at topological distance 8	Negative	الم الم	Presence of this fragment makes pesticides non-toxic
3	F06[C-P]	2D atom pair	Frequency of C-P at topological distance 6	Negative	مرمم	Presence of this fragment makes pesticides non-toxic

Table S6. Mechanistic interpretation and Definition of descriptors related to π - π Electronegativity: MD (Mallard duck) oral pLD₅₀ oral pLD₅₀

Sl	Descriptors	Class	Definition	Contribution	Fragments	Mechanistic interpretation
no			of			
			descriptors			
1	T(PCl)	2D atom pair	Sum of topological distances between phosphorus and chlorine	Negative	H ₃ C D—CH ₃	Attachment of this fragment in structure makes pesticides non-toxic

Table S7. Mechanistic interpretation and definition of descriptors related to lipophilicity: MD (Mallard duck) oral pLD_{50}

Sl	Descriptors	Class	Definition	Contribution	Fragments	Mechanistic interpretation
no			of			
			descriptors			
1	nBridge-	Ring-	How many	Positive	Hetero-atoms	Presence of this group makes pesticides
	Head	descriptor	bridgehead atoms		like −PO ₄ ,	more toxic
			are present in the		$-SO_4$ etc.	
			ring structure			

2	nArOCON	Functional group count	How many aromatic (thio-) carbamate groups are in a compound	Positive	R1 N O R2	Presence of this fragment makes pesticides more toxic

Table S8. Mechanistic interpretation and definition of descriptors related to electronegativity: ZF (Zebra finch) oral pLD₅₀

Sl	Descriptors	Class	Definition	Contribution	Fragments	Mechanistic interpretation
no			of			
			descriptors			
1	F01[O-P]	2D atom pair	Frequency of O-P at topological distance 1	Positive	O P	Presence of this group makes pesticides more toxic
2	nRSR	Functional group count	Number of sulfide groups present in a compound	Positive	Number of sulfur	Presence of sulfur makes pesticides more toxic

3	c-031	Atom centered fragment	Two electronegative atoms attached with carbon along with	Positive	XCR— X(X=Cl,Br,F, O,S etc.)	Presence of this group make pesticides more toxic
			another group			

Table S9. Mechanistic interpretation and definition of descriptors related to hydrophilicity: ZF (Zebra finch) oral pLD_{50}

;	S1	Descriptors	Class	Definition	Contribution	Fragments	Mechanistic interpretation
1	no			of			
				descriptors			

1	F04[O-S]	2D atom pair	Frequency of the O-S fragment in a compound at topological distance 4	Negative	o s	Attachment of this fragment in ring system makes pesticides non-toxic
2	B04[C-C]	2D atom pair	Presence/absence of C-C at topological distance 4	Negative		Presence of this fragment makes pesticides non-toxic
3	F06[C-S]	2D atom pair	Frequency of C-S at topological distance 6	Negative	1 1 1 1 1 1 1 1 1 1	Presence of this fragment makes pesticides non-toxic
4	F05[C-S]	2D atom pair	Frequency of C-S at topological distance 5	Negative		Presence of this fragment makes pesticides non-toxic

Table S10. Mechanistic interpretation and definition of descriptors related to π - π electronegativity: ZF (Zebra finch) oral pLD₅₀

Sl no	Descriptors	Class	Definition of descriptors	Contribution	Fragments	Mechanistic interpretation
1	T(OBr)	2D atom pair	Sum of topological distances between oxygen and bromine	Negative	O-CH ₃	Presence of this group makes pesticides non-toxic
2	B04[CI-CI]	2D atom pair	Presence/absence of Cl-Cl at topological distance 4	Negative	CI	Presence of this fragment makes pesticides more non-toxic