Electronic Supplementary Material (ESI) for Environmental Science: Advances. This journal is © The Royal Society of Chemistry 2023

1 Supporting Information:

2	
3	Levels of Per- and Polyfluoroalkyl Substances (PFAS) in
4	various Wastewater-derived Fertilizers - Analytical
5	investigations from different perspectives
6	
7	Christian Vogel ^a *, Philipp Roesch ^a , Philipp Wittwer ^a , Christian Piechotta ^a , Jan Lisec ^a , Thomas
8	Sommerfeld ^a , Stephanie Kluge ^a , Hannes Herzel ^a , Thomas Huthwelker ^b , Camelia N. Borca ^b ,
9	Franz-Georg Simon ^a
10	
11	^a Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin,
12	Germany
13	^b Paul Scherrer Institute, Swiss Light Sources, 5232 Villigen PSI, Switzerland
14	
15	
16	Total SI-Tables: 4
17	<u>Total SI-Figures:</u> 1
18	Total SI-Pages: 9
19	

20 Additional Materials and Methods

21

22 Sample extraction and preparation for quantitative EOF analysis by Roesch et al. 2022¹

23

Dried solid samples (1 g) were weighed directly in 50 ml centrifugal polypropylene (PP) tubes, 24 followed by addition of 10 ml of a NH₃ in MeOH (0.1 M) solution. After that, an established 25 extraction process including sonication (15 min), followed by 30 min of vortexing (1500 min⁻¹) 26 and subsequent centrifugation (5 min, 4000 min⁻¹) was applied to the samples. In the next step the 27 supernatant liquid was carefully decanted. Subsequently, the remaining residues were extracted in 28 a second run using 10 ml of pure MeOH. After decanting the eluates, the combined solutions were 29 30 carefully concentrated (~ 2 ml) using a gentle constant flow of N₂. For SPE preparation, all samples were pH adjusted (pH = 4-5) using 0.5 % formic acid and afterwards diluted to 15 ml with ultra-31 pure water and eventually centrifuged. All SPE cartridges were primed applying first 4 ml basic 32 MeOH (0.3 % NH₃), then 4 ml pure MeOH, followed by two subsequent 4 ml steps of ultra-pure 33 water. After that, diluted samples were loaded on the solid phases maintaining a constant dripping 34 rate of approx. 1 drop/s. Two washing steps were applied afterwards using 2 x 10 ml of aqueous 35 ammonia solution (0.01 %) and 10 ml of deionized water. Subsequent application of a constant 36 vacuum (~40 mbar) for approx. 30 min, lead to cautious drying of the loaded SPE cartridges. After 37 that, all cartridges were firstly eluted upon slow addition of 2 x 2 ml pure MeOH, followed by 38 39 three-time addition of 2 ml basic MeOH (0.3 % NH₃) into 15 ml PP vials. Eventually, all SPE cartridges were eluted with 4 ml hexanes, followed by 4 ml of acetone and collected in fresh 15 ml 40 PP vials. Both separated eluates were slowly evaporated to dryness by N₂ gas and subsequently 41 reconstituted in 2 mL of fresh MeOH. Finally, both eluates were analyzed by CIC and the values 42

43 summed up.

44

45 LC-MS/MS QA/QC

46

The isotopically labelled internal standard species were obtained from Wellington Laboratories as a prepared solution with a concentration of 50 μ g mL⁻¹ with an uncertainty of ±2.5 %. For quality assurance and control an independent certified reference material (Chiron) containing all target PFAS with a concentration of 5 μ g mL⁻¹ with an uncertainty of ±5 % was used. All organic solvents, reagents, and modifier used for extraction and for LC-MS/MS analysis were tested with respect to a possible blank value. All dilution and spiking steps were gravimetrically controlled.

Table S1: EOF values of various sewage sludge and wastewater-based fertilizer samples; * taken

from (Roesch et al. 2022); From SSA4 and SS5 two samples out of the triplicate were negative after blank correction and hence, values were omitted.

EOF (µg/kg)				
SL1*	7209.4 ± 1748.6			
SL2	537.6 ± 125.3			
SL3	429.7 ± 19.3			
SL4*	421.2 ± 76.6			
SL5*	357.4 ± 81.6			
SL6*	256.1 ± 16.9			
SL7	243.7 ± 44.1			
SL8*	173.1 ± 12.7			
SL9	162.1 ± 101.8			
SL10*	154.3 ± 21.7			
SSA1	121.6 ± 37.6			
SSA2 92.9 ± 58.3				
SSA3 89.9 ± 30.4				
SSA4	44 87.3			
SSA5	84.6			
SSA6	<loq< th=""></loq<>			
TT1	88.8 ± 2.4			
TT2	82.1 ± 37.5			
TT3	77.8 ± 21.4			
TT4	<loq< th=""></loq<>			
TT5	<loq< th=""></loq<>			
TT6	<loq< th=""></loq<>			
LTC1	<loq< th=""></loq<>			
LTC2 <loq< th=""></loq<>				
Struvite1	112.1 ± 8.7			
Struvite2 96.2 ± 14.4				

Table S2: Comparison EOF vs. PFAS DGT. From SL2, SL8 and SSA1 one sample each (DGT)

60 was negative after blank correction, hence, values were omitted

	EOF (µg/kg)	DGT PFAS-F (ng)		
SL1	7209.4 ± 1748.6	2.25 ± 0.30		
SL2	537.6 ± 125.3	0.42		
SL3	429.7 ± 19.3	0.09 ± 0.02		
SL5	357.4 ± 81.6	0.15 ± 0.05		
SL7	243.7 ± 44.1	0.15 ± 0.00		
SL8	173.1 ± 12.7	0.22		
SSA1	121.6 ± 37.6	0.22		
SSA2	92.9 ± 58.3	<loq< th=""></loq<>		
TT3	77.8 ± 21.4	0.07 ± 0.00		
Struvite1	112.1 ± 8.7	<loq< th=""></loq<>		
Struvite2	96.2 ± 14.4	0.08 ± 0.01		

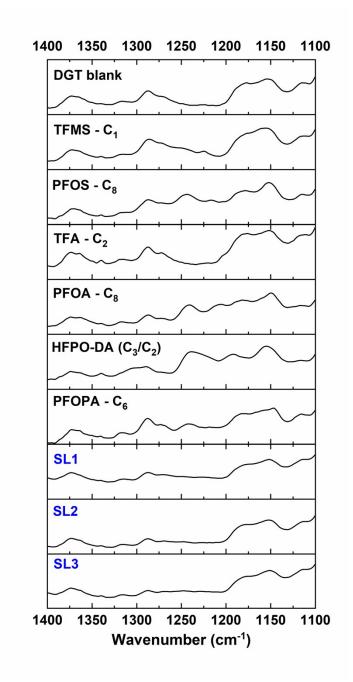

	SL1	SL4	SL5	SL6	SL8	SL10
PFBA	3.8 ± 0.3	1.8 ± 0.1	1.9 ± 0.0	5.7 ± 0.3	0.6 ± 0.1	1.3 ± 0.2
PFPeA	45.4 ± 1.9	n.d.	n.d.	1.8 ± 0.5	0.3	0.6
PFHxA	34.6 ± 0.3	5.9 ± 0.2	4.5 ± 0.8	18.6 ± 1.5	5.1 ± 2.4	6.4 ± 1.0
PFHpA	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
PFOA	3.3 ± 0.4	3.6 ± 1.1	4.1 ± 1.0	5.7 ± 0.2	2.8 ± 0.6	3.3 ± 0.5
PFNA	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
PFDA	1.8 ± 0.1	0.2 ± 0.2	3.8 ± 0.7	1.1 ± 0.2	0.5 ± 0.0	1.3 ± 0.3
PFBS	5.9 ± 0.3	4.9 ± 0.1	5.9 ± 0.3	5.2 ± 0.1	6.1 ± 0.2	4.5 ± 0.3
PFHxS	1.8 ± 0.0	1.4 ± 0.0	2.3 ± 0.4	1.4 ± 0.1	1.6 ± 0.1	1.6 ± 0.2
PFOS	7.7 ± 0.5	4.1 ± 0.1	6.1 ± 0.1	18.5 ± 0.2	2.4 ± 0.1	3.4 ± 0.4
Sum Target	104.3 ± 2.1	21.8 ± 1.1	28.5 ± 1.5	58.0 ± 1.6	19.6 ± 2.5	22.3 ± 1.3
EOF	7209 ± 1748	421.2 ± 76.6	357.4 ± 81.6	256.1 ± 16.9	173.1 ± 12.7	154.3 ± 21.7

Table S3: Targeted analysis by LC-MS/MS of selected PFAS (in μg/kg); n. d. (not detected)

Table S4: Results from suspect screening of the EOF extract from SL1

Group	Name	Formula	Retention time	Observed m/z	Intensity
PFCA (C4-C7)	2,3,3,4,4,4-Hexafluorobutanoic acid	C4H2F6O2	1.477	194.99352	81
PFCA (C4-C7)	Perfluorobutanoic acid	C4HF7O2	1.803	212.98203	9
PFCA (C4-C7)	PFCA-H; C5H2F8O2	C5H2F8O2	1.994	244.99001	315
PFCA (C4-C7)	PFCA-H; C6H5F7O3	C6H5F7O3	3.241	257.00537	184
PFCA (C4-C7)	PFCA-diether_Hsubstituted; C5H2F8O4	C5H2F8O4	2.024	276.97424	1952
PFCA (C4-C7)	3-(Perfluorobutyl)propanoic acid	C7H5F9O2	4.286	291.00787	366
PFCA (C4-C7)	PFCA-H; C6H2F10O2	C6H2F10O2	2.316	294.98871	55
PFCA (C4-C7)	Perfluorohexanoic acid	C6HF11O2	2.74	312.97717	151
PFCA (C4-C7)	РҒСА-Н; С7Н3Ғ9О4	C7H3F9O4	4.662	320.98083	220
PFCA (C4-C7)	PFCA-H; C7H2F12O2	C7H2F12O2	2.485	344.98318	56
PFCA (C4-C7)	PFCA-perfluoroalkyl_branched; C7HF13O2	C7HF13O2	3.192	362.97394	19
PFCA (C8-C10)	53FTA	C8H5F11O2	3.234	341.00659	504
PFCA (C8-C10)	PFCA-H; C8H5F11O3	C8H5F11O3	2.896	357.00262	276
PFCA (C8-C10)	Perfluorooctanoic acid	C8HF15O2	3.607	412.97229	252
PFCA (C8-C10)	PFCA-H; C9H2F16O2	C9H2F16O2	3.266	444.97824	77
PFCA (C8-C10)	PFCA-H; C10H2F18O2	C10H2F18O2	0.121	494.97598	25
PFCA (C8-C10)	Perfluorodecanoic acid	C10HF19O2	4.404	512.96625	53
PFSA	FT-PFSA; C5H5F7O3S	C5H5F7O3S	2.129	276.9765	400
PFSA	PFSA-H; C5H2F8O4S	C5H2F8O4S	2.306	308.94522	532
PFSA	Perfluorooctanesulfonic acid	C8HF17O3S	4.009	498.94046	1780
PAPs	PFAP-FT_PAP; C4H6F5O3P	C4H6F5O3P	2.813	226.99152	292
PAPs	PFAP-diPAP; C2HF6O4P	C2HF6O4P	2.397	232.94884	665
PAPs	PFAP-FT_diPAP; C6H9F6O4P	C6H9F6O4P	4.286	289.01077	1747
Pesticide	Fludioxonil	C12H6F2N2O2	3.267	247.03737	493
Pesticide	Flufenacet ESA	C11H14FNO4S	2.863	274.05988	156
Pharmaceutical	s Flufenamic acid	C14H10F3NO2	3.442	280.06329	661

Pharmaceu	ticalsPitavastatin	C25H24FNO4	4.334	420.16705	234
FCA	4,4'-Difluorobenzophenone	C13H8F2O	3.899	217.04753	1801
FCA	1-cyclopropyl-6,7-difluoro-1,4-dihydro-8-hydroxy-4-oxo-3- Quinoline-3-carboxylic acid	C13H9F2NO4	1.825	280.03494	501
PFPA	2-(Perfluorohexyl)ethylphosphonic acid	C8H6F13O3P	3.58	426.97366	338
Other	FT-thioether; C6H7F5O2S	C6H7F5O2S	3.234	237.00038	273
Other	3,3,4,4,5,5,6,6,6-Nonafluorohexene	C6H3F9	1.739	245.00185	290
Other	Perfluorovaleraldehyde	C5HF9O	2.733	246.98608	137
Other	HFPO-DA, 2,3,3,3-Tetrafluoro-2-(pentafluoroethoxy)propanoic acid	C5HF9O3	2.031	278.96927	366
Other	Perfluoroheptanal; 1,1,2,2,3,3,4,4,5,5-Decafluoro-1-((trifluoro vinyl)oxy)pentane	C7HF13O	3.607	346.97931	442
Other	(Perfluorododecyl)ethylene	C14H3F25	4.63	644.97241	763

Figure S1: Raw FT-IR spectra of the applied DGT binding layers.

76 **References:**

 P. Roesch, C. Vogel, T. Huthwelker, P. Wittwer and F.-G. Simon,Investigation of per- and polyfluoroalkyl substances (PFAS) in soils and sewage sludges by fluorine K-edge XANES spectroscopy and combustion ion chromatography *Environmental Science and Pollution Research*, 2022, 29, 26889-26899, https://doi.org/10.1007/s11356-021-17838-z.