Polyamidoxime granules for solar-enhanced uranium extraction from seawater

3 Xue Zhang, Qianhong Gao, Dadong Shao*

4 School of Environmental and Biological Engineering, Nanjing University of Science

5 and Technology, Nanjing 210094, PR China

6 Supplemental Information, 5 Pages

7 List of Supplemental Information Contents

8	Table S1 Preparation conditions of KMnO4@PAOP3
9	Table S2. Curve fitting results of XPS C 1s spectra
10	Table S3. Curve fitting results of XPS N 1s spectraP3
11	Table S4. Curve fitting results of XPS O 1s spectraP3
12	Table S5. Parameters for kinetic models of U(VI) adsorption on PAO and on
13	KMnO ₄ @PAO at pH 8.2 and 298 KP4
14	Table S6. Parameters calculated from Langmuir and Freundlich models for U(VI)
15	adsorption on KMnO ₄ @PAO at pH 8.2 and 298 KP4
16	Table S7. Parameters calculated from Langmuir and Freundlich models for U(VI)
17	adsorption on KMnO ₄ @PAO at pH 4.0P4
18	Table S8. Thermodynamic parameters for U(VI) adsorption on KMnO ₄ @PAO at pH
19	4.0P4
20	Fig. S1. Simulation results of U(VI) kinetic dataP5
21	Fig. S2. Simulation results of U(VI) adsorption isotherms on KMnO ₄ @PAOP6
22	Fig. S3. Effect of eluants on the desorption of U(VI) from
23	KMnO ₄ @PAOP6

24 **Table S1**. Preparation conditions of $KMnO_4@PAO$.

	KMnO ₄ (g)	PAN (g)
Fixed KMnO ₄ series	0.20	1.00 2.00
Fixed PAN series	1.00 1.50	2.00

25 **Table S2.** Curve fitting results of XPS C 1s spectra.

	Peak	BE ^a (eV)	FWHM ^b (eV)	%
	-C≡N	284.78	1.64	74.6
	C–OH	286.50	1.53	21.9
PAO	-C=O	288.07	1.40	3.50
	-COOH	290.00	0.00	0.00
	-C≡N	284.68	1.70	61.6
	C–OH	286.50	2.14	29.4
KIVIIIO4@PAO	-C=O	288.12	1.27	6.40
	-COOH	288.99	0.95	2.60

26 a: Binding energy; b: Full width at half-maximum.

27 Table S3. Curve fitting results of XPS N 1s spectra.

	Peak	BE (eV)	FWHM (eV)	%
	N-H	399.51	1.75	75.2
PAO	H ₂ N-C=NOH	400.10	2.93	9.00
	$-N^+$	401.60	2.68	15.8
	N-H	399.50	2.12	78.5
KMnO ₄ @PAO	H ₂ N-C=NOH	400.00	3.93	19.0
	-N ⁺	401.60	0.54	2.50

28 Table S4. Curve fitting results of XPS O 1s spectra.

	Peak	BE (eV)	FWHM (eV)	%
	-COOH	531.83	2.23	68.4
PAO	C=O	532.85	2.23	24.5
	-OH	533.50	2.75	7.10
	-COOH	531.80	2.62	86.0
KMnO ₄ @PAO	C=O	532.81	3.94	13.7
	-OH	533.50	0.50	0.30

29 Table S5. Parameters for kinetic models of U(VI) adsorption on PAO and on
30 KMnO₄@PAO at pH 8.2 and 298 K.

	Pseudo first order			Pseudo second order		
	$k_1(1/h) q_e(mg/g) R^2$			$k_2 (g/mg \cdot h)$	q _e (mg/g)	\mathbb{R}^2
PAO	0.368	11.1	0.985	0.0382	13.1	0.988
KMnO ₄ @PAO	0.541	34.0	0.983	0.0184	38.4	0.995

31 Table S6. Parameters calculated from Langmuir and Freundlich models for U(VI)

32 adsorption on $KMnO_4$ @PAO at pH 8.2 and 298 K.

	Langmuir model			Freund	dlich mod	el
	$q_{max} (mg/g)$ b (L/mg) R ²			K (mg/g)	1/n	\mathbb{R}^2
KMnO ₄ @PAO	44.0	0.523	0.982	20.1	0.236	0.898

33 Table S7. Parameters calculated from Langmuir and Freundlich models for U(VI)

34 adsorption on KMnO₄@PAO at pH 4.0.

T(V)	Langmuir model			Freundlich model		
I (K)	$q_{max} (mg/g)$	b (L/mg)	R ²	K (mg/g)	1/n	R ²
298	233	0.0255	0.906	35.8	0.323	0.752
308	239	0.0435	0.747	59.1	0.247	0.561
318	242	0.0947	0.824	92.4	0.177	0.577

35 **Table S8**. Thermodynamic parameters for U(VI) adsorption on KMnO₄@PAO at pH

36 4.0.

T(V)	lnK _d	Th	ermodynamic parame	ters
I (K)		ΔG° (KJ/mol)	ΔH° (KJ/mol)	$\Delta S^{\circ} (J/mol \cdot K)$
298	8.41	-20.5		
308	8.86	-22.2	49.8	236
318	9.68	-25.2		

37

38

39 Fig. S1. Simulation results of U(VI) kinetic data. m/V = 0.4 g/L, I = 0.1 mol/L NaCl,

40 T = 298 \pm 1 K, pH = 8.2 \pm 0.1, C[U(VI)]_{initial} = 20.0 mg/L.

42 Fig. S2. Simulation results of U(VI) adsorption isotherms on KMnO₄@PAO. m/V =
43 0.40 g/L, I = 0.1 mol/L NaCl, contact time: 24 h. Fig. S3A: pH = 8.2 ± 0.1. Fig. S3B:
44 pH = 4.0 ± 0.1.

46 Fig. S3. Effect of eluants on the desorption of U(VI) from KMnO₄@PAO. T = 298 ±
47 1 K, contact time: 24 h, C[U(VI)]_{initial} = 20.0 mg/L, m/V = 0.40 g/L, pH = 8.2 ± 0.2, I
48 = 0.10 mol/L NaCl, C[eluant] = 0.10 mol/L.

45