Optimizing electronic configuration of h-BN for boosting

photocatalytic transformation of acid gases under visible light

Hao Yang^{a, b}, Libin Zeng^a, Jiali Wang^a, Can Yang^{a*}

^aState Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry,

Fuzhou University, Fuzhou, 350116, P. R. China

^bCollege of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China

*Corresponding author. Email address: <u>canyang@fzu.edu.cn</u>

List of Captions:

1. Material characterization

2. Photocatalytic NO removal process

Scheme S1 Schematic diagram of the photocatalytic NO removal process

- Fig. S1 Mott-Schottky plots of BCN samples.
- Fig. S2 EPR pattern of BCN-2 under visible illumination.
- Fig. S3 Long-term stability test for BCN-2 and catalyst regeneration.
- Fig. S4 The XRD patterns of BCN-2 before and after desulfurization.
- Fig. S5 The FTIR patterns of BCN-2 before and after desulfurization.

Fig. S6 In situ DRIFTS testing of H₂S adsorption processes over BCN-2 sample.

Fig. S7 The residual S on the surface of the BCN-2 is analyzed by XPS after a long-time.

Table S1 Specific surface area, pore size and atomic percent of the BCN samples.Table S2 Detailed information on the normalization of the activity over BCN-2 under different wavelengths.

1. Material characterization

Powder X-ray diffraction (XRD) patterns were obtained on a Rigaku diffractometer (MiniFlex 600) with Cu Ka at 40 kV. Fourier transform infrared spectroscopy (FTIR) spectra were recorded on a Thermo Nicolet iS50 Spectrometer with DTGS ATR detector. X-ray photoelectron spectroscopy (XPS, Thermo Scientific ESCALAB 250XI) was used to identify the surface chemical composition of samples. The scanning electron microscope (SEM) measurements were performed on a Hitachi S-8010 field-emission scanning electron microscope with an accelerating voltage of 5 kV. The transmission electron microscope (TEM) measurements were performed on a FEI talos F200s electron microscope equipped with an energy dispersive X-ray detector (EDX) at an acceleration voltage of 100 kV. The N₂ adsorption-desorption isotherms plots of samples were obtained by a Micromeritics ASAP 2020 analyzer and the specific surface area was calculated by Brunauer-Emmet-Teller (BET) method. The electron paramagnetic resonance (EPR) spectroscopy was conducted by a BRUKER A300 spectrometer. The light absorption performances were investigated UV-vis spectrometer (SolidSpec-3700, Shimadzu. Japan). The by a photoelectrochemical testing was performed by Bio-Logic VSP-300 electrochemical workstation. The temperature-programmed desorption curves of gas were recorded by a micromeritics AutoChem II 2920 Chemisorption analyzer.

2. Photocatalytic NO removal process

The photocatalytic NO removal process is shown in Scheme S1. The surface dish containing 20 mg of catalyst was placed in a closed quartz reactor and an LED

lamp was used as the light source. Using standard air to dilute NO to 1 ppm and control the flow rate of mixed gas at 500 mL·min⁻¹. The standard air was first bubbled through a bottle containing water before being mixed with NO. Before the illumination, the feed gas was passed in the dark state for a while until the NO concentration was stable ensuring that the catalyst surface reached the equilibrium of adsorption and desorption. A NO-NO₂-NO_x Analyzer (U. S. A. EPA, Model 42i) was used for product analysis. The removal efficiency (η) of NO was calculated as $\eta = (1-C/C_0) \times 100\%$, where *C* and *C*₀ are the transient and initial concentrations of NO, respectively.

Scheme S1 Schematic diagram of the photocatalytic NO removal process.

1 - mass flow controller; 2 - ball valve; 3 - bubbler; 4 - gas mixing tank; 5 - temperature and humidity detector; 6 - reactor; 7 - light source; 8 - NO-NO₂-NO_x analyzer; 9 - tail gas collector.

Fig. S1 Mott-Schottky plots of BCN samples.

Fig. S2 EPR pattern of BCN-2 under visible illumination.

Fig. S3 Long-term stability test for BCN-2 and catalyst regeneration.

Fig. S4 The XRD patterns of BCN-2 before and after desulfurization.

Fig. S5 The FTIR patterns of BCN-2 before and after desulfurization.

Fig. S6 In situ DRIFTS testing of H₂S adsorption processes over BCN-2 sample.

As the infrared vibrational signal of HS- is very weak, the test was carried out using 50000 ppm of H_2S (N₂ as equilibrium gas) gas. Before testing the sample BCN-2 was heated at 200°C for 2 hours under nitrogen protection to remove surface adsorbed contaminants.

Fig. S7 The residual S on the surface of the BCN-2 is analyzed by XPS after a long-time

photocatalytic process.

 Table S1 Specific surface area, pore size and atomic percent of the BCN samples (Atomic

 percentage data from XPS tests).

Samples	S _{BET} (m²/g)	Pore size (nm)	Atomic %		
			В	Ν	С
BN	445	2.04	/	/	/
BCN-1	596	2.08	47.38	44.95	7.67
BCN-2	759	2.07	44.55	42.31	13.14
BCN-3	957	2.01	34.13	29.8	36.06

 Table S2 Detailed information on the normalization of the activity over BCN-2 under different wavelengths.

	598nm	530nm	495nm	470nm	420nm	380nm
<i>P</i> (mW/cm ²)	52	84	134	241	142	120
$C_{ heta}$ (ppm)	21.4	21.4	21.4	21.4	21.3	21.3
<i>С</i> _А (ррт)	20.96	20.1	19.54	9.24	0.16	0.04
η (%)	2.056	6.075	8.692	56.822	99.249	99.812
Normalized η (%)	1.142	4.821	4.324	15.718	46.596	55.451

Where P is the optical power density (mW/cm²), C_{θ} is the initial H₂S concentration (ppm), C_A is the transient H₂S concentration (ppm), η is the removal efficiency of H₂S (%) and calculated as *formula S1*.

$$\eta = (1 - C_A / C_0) \times 100\%$$
 (S1)

In this work, the illumination area of the catalyst is a constant value of 1.5 cm². To ensure the accuracy and reasonable comparison result, the removal efficiency of every point wavelength is normalized by the optical power density. Namely, *Normalized* η is the H₂S conversion rate for 100 mW of light irradiation per unit area and is calculated as *formula S2*.

Normalized
$$\eta$$
 (%) =100 × $\eta/(P*1.5)$ (S2)