Supplementary materials

# The missing small microplastics: easily generated from weathered plastic pieces in labs but hardly detected in natural environments

Fangni Du<sup>a</sup>, Huiwen Cai<sup>a</sup>, Lei Su<sup>a</sup>, Wei Wang<sup>b</sup>, Liwu Zhang<sup>b,c</sup>,

Chengjun Sun <sup>d</sup>, Beizhan Yan <sup>e</sup>, Huahong Shi <sup>\*,a</sup>

<sup>a</sup> State Key Laboratory of Estuarine and Coastal Research, East China Normal

University, Shanghai 200241, China

<sup>b</sup> Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,

Department of Environmental Science & Engineering, Fudan University, Shanghai

200433, China

<sup>c</sup> Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092,

China

<sup>d</sup> Key Laboratory of Marine Eco-environmental Science and Technology, Marine

Bioresource and Environment Research Center, First Institute of Oceanography,

Ministry of Natural Resources (MNR), Qingdao 266061, China

<sup>e</sup> Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York,

USA

Address all correspondence to: State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China;

hhshi@des.ecnu.edu.cn

## **2. METHODS AND MATERIAL**

#### 2.3 Extraction of MPs from sediment samples

We compared the extracting efficiency of MPs and SMPs between saturated NaCl and NaBr (1.55 g/cm<sup>3</sup>) solution. Firstly, the PS fluorescent microspheres (9.9  $\mu$ m, G1000, Thermo, USA) and PP MPs fragmented from plastics were prepared as the interior standard. The PS original solution was prepared from 100  $\mu$ L of PS latex into a glass bottle with 30 mL Milli-Q water. And we set three replicates with 200  $\mu$ L of the solution. The solution was dropped on a circular silicon wafer and counted under a microscope (BX53, Olympus, Japan). The PP plastic piece was put into a glass tube with 30 mL Milli-Q water and then ultrasonicated for 1 min. The three replicates of circular silicon wafers with 200  $\mu$ L of the solution was identified and counted with a Raman microscope (inVia Reflex, Renishaw, UK). Secondly, the sediment and 200  $\mu$ L of PS and 1000  $\mu$ L of PP MPs standard solution were put into a clean long glass tube; then the saturated solutions of 300 mL of NaCl/NaBr were added into glass tube. The method of extraction and filtration was as the same as that described in section

## 2.5. Identification and quantification of MPs using Raman microscope

The calculation abundance process of different sizes of plastics fragments produced from plastics pieces is s defined as:

$$Abundance_{size1} = average(\frac{DPn \times \frac{DA}{TA}}{WP})$$

Here, DPn represents the detected number of different sizes of plastic fragments, DA means detected area, TA is total area and WP is the weight of plastic pieces. The calculation abundance process of different sizes of MPs/NPs in sediment is s defined as:

$$Abundance_{size2} = average(DPn \times \frac{DA}{TA} \times SPn)$$

Here, DPn represents the detected number of NPs/MPs, DA means detected area,

TA is total area and SPn is the percentage of NPs/MPs with different sizes.

# **Legends of Supplementary Figures**

Figure S1. Detected area using two different Raman. (Raman (Thermo Scientific<sup>TM</sup> DXR<sup>TM</sup> 3) with 20X magnification object and 785 nm laser was used to identify the large MPs (size > 50  $\mu$ m); Raman (Renishaw, inVia Reflex, UK) with 50X magnification object and 785 nm laser was used to identify the small MPs (size of 10-50  $\mu$ m)).

Figure S2. Morphological characteristics of plastic pieces from the environments. A1-C1 and A2-C2 are obtained using optical microscope; A3-C3 is obtained using SEM.

Fig. S3 Abundances and size distribution of six samples after treatments of ultrasonic and oscillator. Sample 1-5: polypropylene; Sample 6: polyethylene.

Figure S4. SEM images and Raman spectra of MPs/NPs on the SERS substrate and silicon wafer.

Table S1 The aging characters of six types of plastics

Table S2 The abundance and recycling rate of internal standard of PS spheres and PP fragments after extracting by two flotation agents (NaCl, NaBr



Fig. S1 Detected area using two different Raman. (Raman (Thermo Scientific<sup>™</sup> DXR<sup>™</sup> 3) with 20X magnification object and 785 nm laser was used to identify the large MPs (size > 50 µm); Raman (Renishaw, inVia Reflex, UK) with 50X
magnification object and 785 nm laser was used to identify the small MPs (size of 10-

50 µm))



Fig. S2 Morphological characteristics of plastic pieces from the environments.  $A_1$ - $C_1$  and  $A_2$ - $C_2$  are obtained using optical microscope;  $A_3$ - $C_3$  is obtained using SEM.



Fig. S3 Abundances and size distribution of six samples after treatments of ultrasonic and oscillator. Samples 1-5: polypropylene; Sample 6: polyethylene.



Fig. S4 SEM images and Raman spectra of MPs/NPs on the SERS substrate and

silicon wafer

|               | Measurable parameters |              |                           | Creat      |
|---------------|-----------------------|--------------|---------------------------|------------|
| Sample number | Line density          | Surface loss | C*E<br>(Contrast*Entropy) | feature    |
| PP-1-1        | 19.000                | 34.685       | 0.189                     |            |
| PP-1-2        | 13.033                | 29.647       | 0.141                     | Powdered   |
| PP-1-3        | 18.138                | 26.616       | 0.158                     |            |
| PP-2-1        | 13.029                | 29.741       | 0.202                     |            |
| PP-2-2        | 7.934                 | 26.779       | 0.162                     | Switch     |
| PP-2-3        | 6.625                 | 20.820       | 0.225                     |            |
| PP-3-1        | 19.000                | 35.417       | 0.338                     |            |
| PP-3-2        | 26.203                | 23.750       | 0.360                     | Polygon    |
| PP-3-3        | 38.246                | 17.960       | 0.922                     |            |
| PP-4-1        | 22.836                | 35.750       | 1.755                     |            |
| PP-4-2        | 10.389                | 29.047       | 0.587                     | Long line  |
| PP-4-3        | 11.212                | 32.146       | 0.505                     |            |
| PE-1-1        | 5.826                 | 61.210       | 3.101                     |            |
| PE-1-2        | 4.924                 | 18.067       | 3.401                     | Square     |
| PE-1-3        | 4.716                 | 45.186       | 3.369                     |            |
| PE-2-1        | 6.038                 | 9.543        | 0.177                     |            |
| PE-2-2        | 25.744                | 15.968       | 1.087                     | Short line |
| PE-2-3        | 4.456                 | 7.830        | 0.148                     |            |

Table S1 The aging characters of six types of plastics

\* Line density: for measuring the morphological features of crack; Surface loss: using the color threshold for measurement; Contrast\*Entropy: using gray-level co-occurrence matrix for measuring the morphological features of irregular patten.

| Sample   | Abundance of PS<br>spheres<br>(items/100 g sediment) | Recycling<br>rate of PS<br>spheres | Abundance of PP<br>fragments<br>(items/100 g<br>sediment) | Recycling<br>rate of PP<br>fragments |
|----------|------------------------------------------------------|------------------------------------|-----------------------------------------------------------|--------------------------------------|
| NaCl     |                                                      |                                    |                                                           |                                      |
| Sample-1 | 293±87                                               | 3.60%                              | 369±373                                                   | 26.61%                               |
| Sample-2 | 138±50                                               | 1.70%                              | $724 \pm 678$                                             | 52.23%                               |
| Sample-3 | 292±125                                              | 3.59%                              | 609±179                                                   | 43.91%                               |
| NaBr     |                                                      |                                    |                                                           |                                      |
| Sample-1 | 292±164                                              | 3.59%                              | 355±346                                                   | 25.61%                               |
| Sample-2 | 339±28                                               | 4.17%                              | 369±366                                                   | 26.61%                               |
| Sample-3 | $285 \pm 78$                                         | 3.50%                              | 253±391                                                   | 18.30%                               |

Table S2 The abundance and recycling rate of internal standard of PS spheres and PP fragments after extracting by two flotation agents (NaCl, NaBr)