Electronic Supplementary Information Lithiation/Delithiation of Silicon Heavily Doped with Boron Synthesized Using the Czochralski Process

^a Department of Materials Chemistry, Faculty of Engineering, Shinshu University
^b Technical Division, Faculty of Engineering, Shinshu University
^c Department of Electrical and Computer Engineering, Shinshu University
4-17-1 Wakasato, Nagano 380-8553, Japan

Masahiro Shimizu,^{a,*} Kohei Kimoto,^a Ayaka Kikuchi, ^b Toshinori Taishi,^c Susumu Arai^a

Dr. Masahiro Shimizu Tel: +81-26-269-5627; Fax: +81-26-269-5432 E-mail: shimizu@shinshu-u.ac.jp **Table S1.** Summary of undoped Si (11N) and B- and P-doped Si synthesized by a Czochralski method: dopant species, concentration, electrical conductivity, lattice constant, initial charge–discharge capacities, and Coulomb efficiency.

Sample	Dopant	Concentration / ppm (at.%) ^a	Atomic density / atoms cm ⁻³	Electrical conductivity / mΩ cm ^b	Lattice constant / Å ^c	1 st capacities / mA h g⁻¹	1 st C.E. (%)
1)	- (11N)	Undoped	5.0×10^{22}	10 ⁸	5.431	3364 / 3915	86
2)	Ρ	2000 (0.20)	1.0×10^{20}	0.9	5.431	3389 / 3828	89
3)	В	300 (0.03)	1.5×10 ¹⁹	6.5	5.429	3402 / 3943	86
4)	В	1600 (0.16)	8.0×10 ¹⁹	1.6	5.428	3359 / 3920	86
5)	В	4700 (0.47)	2.4×10^{20}	0.6	5.425	3284 / 3786	87
6)	В	12400 (1.24)	6.2×10^{20}	0.3	5.415	2979 / 3622	82

a) ICP by an alkali fusion method.

b) Four-terminal type impedance measurement.

c) Estimated value from the dopant concentration (ref.1).

Ref.1) G. Masetti, M. Severi, S. Solmi, IEEE Trans. Electron Devices, 30 (1983) 764-769.

Figure S1. SEM images of 11N-Si (dopant free), P-doped Si (2000 ppm), B-doped Si (600, 1600, 4700, 12400 ppm) powders crushed by mechanical milling. Insets: Si ingots prepared by the Czochralski method (300 ppm-B doped Si: crushed granules). the 300 ppm-B doped Si was prepared form a diluted melt of the Si with highly concentrated B and polycrystalline Si.

β size distributions of 11N-Si (dopant in respective distributions (mdd in electrodes SIZe 12400 The granule Size mixture 4700, (MM) particle **t**0 600, of mortar prior to mechanical milling were fractured preparation set to keep the 600, Si: powders used in the Particle **B-doped** Ingots were about the same times Figure S2. work. and MM free) this

Figure S3. Enlarged view of galvanostatic charge–discharge curves (Figure 2a) of undoped (dopant free) and B-doped Si (600, 1600, 4700, and 12400 ppm) electrodes in 1 M LiPF₆/EC:DEC (50:50 vol.%) at a current density of 358 mA g^{-1} (0.1*C*). The onset voltages of lithiation for the B-doped Si are higher than that of the undoped Si irrespective of B concentrations.

Figure S4. Comparison of first and second charge–discharge curves (Figure 2a) of undoped (dopant free) and B-doped Si (600, 1600, 4700, and 12400 ppm) electrodes in 1 M LiPF₆/EC:DEC (50:50 vol.%) at a current density of 358 mA g^{-1} (0.1*C*). The onset voltages of lithiation for the B-doped Si are higher than that of the undoped Si irrespective of B concentrations.

Figure S5. (a) XRD patterns of undoped Si and B-doped (300, 1600, 4700, 12400 ppm) Si electrodes at the lithiation voltage of 0.005 V (vs. Li/Li⁺). The electrodes were charged and discharged at a current density of 358 mA g^{-1} (0.1*C*). (b) Raman spectra of undoped Si and B-doped Si electrodes after the first delithiation (upper cut-off voltage: 2.0 V). Crystalline Si undergoes amorphization after the first lithiation/delithiation process to transform into amorphous Si, which was observed from the Raman spectra. After the first cycle, the vibrations of Si–B (¹¹B, ¹⁰B) bonds were not detected.

Figure S7. Raman spectra of undoped Si and B-doped Si electrodes crystallized by the laser irradiation (wavelength: 532 nm) for 30 min. The undoped Si and B-doped Si electrodes were charged and discharged for one cycle at a current density of 358 mA g^{-1} (0.1*C*), which resulted in the amorphization of the Si and the B-doped Si. The vibrations of Si $^{-11}$ B and Si $^{-10}$ B bonds were again detected. Therefore, even in the case of the pulverization and fracture of the active material due to the huge volume change in Si during lithiation/delithiation, the conductive network of the entire electrode structure is expected to be maintained.

Figure S8. Dependence of integrated lithiation/delithiation capacity of B-doped Si electrodes under the galvanostatic condition with a current density of 358 mA g⁻¹ (0.1*C*). The lithiation/delithiation capacities of at the 4700 ppm-B doped Si at the initial cycles are slightly smaller than those of the 1600 ppm-B doped Si, meaning that the degree of volume change is also relatively lower. The lower volume change appears to result in the better cycling performance, but rather, the 4700 ppm-B doped Si actually has larger integrated capacities after the 100 cycles.