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Fabrication details

HTPC bottom cells development: Symmetrical samples were first realized on n- and p-type wafers 
to assess the potential of the passivating contacts on both wafer polarities and to optimize the 
tunnel oxide growth. For that purpose, planar float zone (FZ) n-type and textured FZ p-type wafers 
(4”) were used with a thickness of ~190 µm and a resistivity of ~2 Ω·cm. After standard wafer 
cleaning, a ~1.2 nm-thick SiOx layer was grown by UV-O3 exposure. On n-type wafers, a 
phosphorus-doped silicon layer with few %at of carbon (SiCx(n)) with a thickness of 35 nm was 
symmetrically deposited by plasma enhanced chemical vapor deposition (PECVD). On p-type 
textured wafers, a boron-doped silicon carbon (SiCx(p)) film with a thickness of 45 nm (on flat) 
was symmetrically deposited by PECVD. Both layers were annealed in a tube furnace at 850°C, 
typically with a dwell time of 15 min. After annealing, SiNx:H was deposited by PECVD, followed 
by firing at 800°C in an inline furnace. After stripping of the SiNx:H in HF, ITO was deposited by 
sputtering through a hard metallic mask to define the contact geometry used for contact resistance 
(ρc) measurements. For solar cell fabrication, we used FZ n-type and p-type wafers (4”) that are 
single-side textured with a thickness of ~190 µm and a resistivity of ~2 Ω·cm. After standard wafer 
cleaning and SiOx growth, SiCx(p) was deposited on the rear textured side and SiCx(n) on the 
planar front side. Same annealing, firing, and SiNx processing steps as for the symmetrical test 
samples were applied.

Perovskite top cell deposition and tandem processing: 2-terminal PK/Si HTPC tandem cells were 
prepared on rear-side textured bottom cells. A thin, 10 nm, ITO recombination junction was 
deposited by sputtering through a shadow mask on the front SiC(n). The hole transport layer 
consisted in a Self-Assembled Monolayer of Me-4PACz deposited by spin-coating from a 1 mM 
solution in ethanol, followed by an annealing at 100°C for 10 min. Subsequently a solution of SiO2 
nanoparticle dispersed in ethanol was deposited on top of the SAM by spin-coating to improve the 
wetting of the perovskite ink.1,2 The perovskite (PK) absorber was deposited via spin-coating 
following an anti-solvent route similar to that described by B. A. Kamino et al.3. An electron 
transport layer (ETL) stack of LiF/C60 was thermally evaporated on top of the perovskite, 
followed by atomic layer deposition (ALD) of a SnOx buffer layer (~10 nm). A 65 nm-thick ITO 
contact was then sputtered through a shadow mask. Finally, a low-temperature screen-printed Ag 
metallization was applied to finish the front contact and ~100 nm of LiF was thermally deposited 
as the antireflective coating. All cells were processed on full 4” Si bottom cells. The active area of 
the tandems is defined by the size of the electrodes.

Device characterization

A Sinton WCT-120 system was used to measure the minority carrier lifetime (τeff) and to 
determine the implied open circuit voltage (iVOC) of the bottom cells. Spatial homogeneity of the 
passivation was observed using photoluminescence imaging (PLI). Transfer length measurements 
were used for ρc measurements.

Illuminated JV curves were recorded on a large-area class A+A+A+ solar simulator from 
WACOM using a two-light source (xenon and halogen). The solar simulator light intensity was 
verified with an externally calibrated reference cell to match the 1-sun AM1.5G equivalent 
intensity. The spectral balance was then checked by means of two filtered externally calibrated 



cells to ensure proper balance between the two sub-cells of the tandem. All measurements were 
done using a four-point method. All cells were measured on a metallic vacuum chuck with an 
active temperature control set to 25°C. Cells areas were masked with laser cut aperture masks 
whose opened areas were optically measured. All cells were measured from 1.9 V to -0.2 V and 
from -0.2 V to 1.9 V with a scan rate of ~191 mV/s. Maximum power point tracking was 
performed using an in-house tracking algorithm which actively modifies the voltage.

External quantum efficiency measurements were made using a custom setup made in house. 
The calibration of the EQE was made using an externally calibrated cell. EQE measurements for 
the cells were made at a chopping frequency of approximately 230 Hz. Blue and red light biases 
were used to saturate the top and bottom cells, respectively.

Large area tandem

A large area tandem was realized using the same type of bottom HTPC cell. For this, the top 
cell was deposited following the same procedure described above. The larger active area was 
simply defined by using a large area shadow mask for the deposition of the front ITO contact, 
followed by the screen printing of a full area metallization. The total active area is 57.4 cm2.

Figure S1. Distribution of JV parameters across a 4" wafer (7 cells, each cell is 2x2 cm2).



Figure S2. Picture of a large area tandem on a 4” wafer. The active area is 57.4 cm2 (left). JV 
curve and MPP tracking (inset) of a corresponding tandem device (right).



Table S1: Selection of non-SHJ 2T tandems reported to date
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1 2015 Stanford/MIT Al BSF Flat n n-i-p Spin 
Coating 1.65 11.5 75 13.7 1 4

2 2016 EPFL/CSEM Al BSF Flat n n-i-p Spin 
Coating 1.64 15.3 64.8 16.3 1.43 5

3 2017 ANU Homojunction Flat n n-i-p Spin 
Coating 1.75 17.6 73.8 22.8 1 6

4 2018 UNSW Homojunction Flat n n-i-p Spin 
Coating 1.68 16.1 78 21 4 7

5 2018 UNSW Homojunction Flat n n-i-p Spin 
Coating 1.66 15.6 68 17.6 16 7

6 2018 UNSW Homojunction Flat n n-i-p Spin 
Coating 1.74 16.2 78 21.9 16 8

7 2018 ANU POLO Flat n p-i-n Spin 
Coating 1.76 17.8 78.1 25.4 1 9

8 2019 UNIST/KIST Al BSF Flat p p-i-n Spin 
Coating 1.65 16.1 79.9 21.2 0.268 10

9 2019 UNIST Al BSF Texture
d p n-i-p Spin 

Coating 1.59 15.48 79 19.4
4 0.25 11

10 2019 UNSW Al BSF Flat n n-i-p Spin 
Coating 1.73 16.5 81 23.1 4 12

11 2019 EPFL/CSEM HTPC/Topcon Texture
d p p-i-n Spin 

Coating 1.74 19.5 74.4 25.4 1.43 13

12 2022 HZB/HQC PERC Flat p p-i-n Spin 
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1.90
7 19.29 78.3 28.8

1 1.006 14

13 2022 ISFH/HZB PERC/Topcon Flat p p-i-n Spin 
Coating 1.8 17.07 69.2

5
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4 1.01 15

14 2022 ANU PERC/Topcon Flat n p-i-n Spin 
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Coating 1.84 14.4 67 17.3 25 17
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8 0.12 18

17 2022 Ningbo HTPC/Topcon Texture
d n p-i-n Spin 
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1.79

7 19.39 81.4
7
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9 0.1 19

18 2023 Ningbo HTPC/Topcon Flat n p-i-n Spin 
Coating 1.78 18.8 81.5 27.4 0.949
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