Supporting Information for

Photo-assisted electrochemical \mbox{CO}_2 reduction at boron-doped diamond cathode

Goki Iwai, Andrea Fiorani,* Jinglun Du and Yasuaki Einaga*

Department of Chemistry, Keio University, Yokohama 223-8522, Japan.

Table of content

1. Boron-doped diamond: SEM micrographs and Raman spectrum	рр. З
2. TiO ₂ NT: characterisation	4
3. Photoelectrochemical cell assembly	5
4. HPLC and GC calibration lines	6
5. Light source: emission spectra	7
6. OCP measurements	7
7. Potential, current, and faradaic efficiency of FA for configuration 1	8
8. The η_{PAE} for configuration 1	9
9. Faradaic efficiency for configuration 1 (all products)	9
10. Current without electric bias ($E_{tot} = 0 V$)	10
11. Potential and current for configuration 2	11
12. Faradaic efficiency for configuration 2 (all products)	11
13. Control experiments for products confirmation	12
14. Efficiency comparison with other PEC systems	13
15. Water oxidation potential at pH 14	13
16. References	13

1. Boron-doped diamond: SEM micrographs and Raman spectrum

Fig. S1. SEM micrograph of BDD showing polycrystalline structure of micrometre size; Raman spectrum showing diamond phonon at 1332 cm⁻¹, and two weak peaks (500 and 1200 cm⁻¹) as result of boron doping (B/C 0.1 %). A peak around 1530 cm⁻¹ (G band) is not evident which indicates the absence of sp² carbon.¹

2. TiO₂ NT: characterisation

Fig. S2. Photograph of the TiO₂ NT electrode; A) Effect of acetone cleaning before electrochemical oxidation; B) Effect of electrochemical oxidation time on photocurrent; C) Response to increase of light power by cyclic voltammetry at 100 mV s⁻¹, and D) current as function of light power; E) Chronoamperometry at selected potentials from -0.9 V to 0.3 V; F) Kubelka-Munk plot of two different TiO₂ NT electrodes. Electrolyte: 0.5 M KOH. Light power: 6.5 mW cm-2 (A and B), 25.2 mW cm⁻² (E). Potential vs Ag/AgCl, KCl (sat'd).

2.1. XRD spectrum of Fig.1B.

 TiO_2 anatase peaks (PDF 01-070-6826: 25.42°, 38.14°, 38.77°, 48.23°, 54.34°, 55.29° for (101), (004), (112), (200), (105) and (211) planes respectively) are mainly observed. And also, the titanium peaks (PDF 01-089-5009: 35.17°, 38.46° and 53.09° for (100), (002) and (102) planes respectively) are also observed, attributed from the metallic titanium underneath the nanotubes.

3. Photoelectrochemical cell assembly

Fig. S3. Photograph of photoelectrochemical cell from different directions.

4. HPLC and GC calibration lines

Fig. S4. GC and HPLC calibration lines for the quantification of CO₂ reduction products: hydrogen, carbon monoxide, and formic acid. Limit of detection (LOD), minimum and maximum concentrations detected after the CO₂ electrochemical reduction experiments are reported.

5. Light source: emission spectra

Fig. S5. Emission spectrum of light source (black). For comparison purpose only, solar standard radiation: AM1.5 Global tilt spectrum (ASTM G-173-03) from the National Renewable Energy Laboratory (blue) https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html. The light source wavelength range is within the solar spectrum.

6. OCP measurements

Fig. S6. OCP measurement at different pH: 5.0, 9.2, and 12.6 in 0.1 M phosphate buffer, and 14 in 0.5 M KOH. Light power was increased gradually from 0.7 to 14.4 mW cm⁻². Potential vs Ag/AgCl, KCl (sat'd).

7. Potential, current, and faradaic efficiency of formic acid for configuration 1

Fig. S7. A) Potential monitoring: $E(TiO_2 NT)$ and E_{tot} ; B) average potential and variation (standard deviation); C) current density; D) average current density and faradaic efficiency for formic acid production. The potential E TiO₂NT is vs Ag/AgCl, KCl (sat'd).

8. The η_{PAE} for configuration 1

Fig. S8. Energy throughput conversion efficiency for photo-assisted electrolysis (η_{PAE}) for configuration 1) and $E_{cathode}$ at -2.15 V vs Ag/AgCl, KCl sat'd. Experimental data (black dots). Computed efficiency boundary line: E_{tot} from Fig. S6B, current density from Fig. S6D, and faradaic efficiency 90 %.

9. Table S1. Faradaic efficiency for configuration 1 (all products)

Light power / mW cm ⁻²	H ₂ / %	CO / %	Formic acid / %	Total / %
6.5	7.6	0.5	85.0	93.1
14.4	4.0	0.4	86.8	91.2
25.2	4.9	0.3	93.6	98.8
35	8.1	0.5	78.9	87.5

10. Current without electric bias ($E_{tot} = 0 V$)

Fig. S9. Current measured without electric bias between TiO_2 NT and BDD electrodes in configuration 2 (i.e., $E_{tot} = 0$ V). Light power 25.2 mW cm⁻².

11. Potential and current for configuration 2

Fig. S10. A) Potential monitoring at TiO_2 NT and BDD electrodes, and B) average potential as function of E_{tot} . C) current density variation with E_{tot} . Light intensity: 25.2 mW cm⁻². For clarity, A) and C) show only one measurement (average), while the measurements are repetition of 3 experiments (standard deviation in B).

E_{tot} / V	H ₂ a / %	CO / %	Formic acid / %	Total / %
1.0	21.3±9.7	0.6±0.2	19.5±2.6	41.4±10
1.2	13.1±5.2	0.4±0.03	37.1±8.4	50.6±9.8
1.3	13.7±1.3	0.3±0.1	73.9±0.7	87.9±1.5
1.4	4.5±1.2	0.3±0.1	82.3±5.4	87.1±5.5
1.5	6.3±0.3	0.2±0.03	85.7±1.5	92.2±1.5
1.6	14.5±2.5	0.2±0.1	85.2±2.1	100.0±3.3
1.8	13.8±5.6	0.4±0.003	86.3±5.2	100.5±7.7
2.0	11.7±4.2	0.5±0.1	90.7±5.0	103.0±6.5
2.2	10.8±4.8	0.8±0.2	88.5±5.0	100.1±6.9
2.4	17.2±5.3	0.3±0.1	85.1±5.6	102.6±7.7

12. Table S2. Faradaic efficiency for configuration 2 (all products)

^a hydrogen might be underestimated because of leaking.

13. Control experiments for products confirmation

Fig. S11. HPLC chromatograms for different conditions to confirm formic acid produced by CO_2 reduction. Standard sample (red trace), and after CO2 electrochemical reduction (black traces). For formic acid: after reduction at E_{tot} 2.2 V with nitrogen bubbling (orange), and before reduction with CO_2 bubbling (blue).

Fig. S12. Time dependence of potential at BDD and TiO_2 NT (black trace) and current (red trace) for reduction at E_{tot} 2.2 V with nitrogen bubbling. Faradaic efficiency: H₂ (89.8%), CO (not detected), formic acid (not detected). Hydrogen calibration line and corresponding hydrogen signal (blue square) detected from GC analysis after the experiment.

14. Table S3. Efficiency comparison with other PEC systems

System	Anode	Cathode	FE	Current density / mA cm ⁻²	$\eta_{ extsf{pec}}$	$\eta_{ ext{ece}}$	Ref.
PEC	GaAs/ InGaP/TiO ₂ / Ni	Pd/C-Ti mesh	94% (HCOOH)	8.5	10%	59.3%	2
PV + EC	IrO ₂ Nanotubes	Cu-Ag Nanocoral	70% (CO/hydrocarbo ns/ oxygenates)	9	4%	34%	3
PV + EC	SnO2/CuO	SnO ₂ /CuO	86.6% (CO)	11.57	13.4%	47%	4
PEC	BiVO4	Cu	65% (HCOOH) / 0.75 V 80% (HCOH) / 0.9 V	0.10 0.36	0.3% (HCOOH) 0.7% (HCOH)	-	5
PV + EC	lrO _x	Nanoporous Ag	93% (CO)	5.99	8.0%	44.6%	6
PV + EC	IrO ₂	OD-Au	80% to 90% (CO)	5.8	6.5%	48.5%	7
PEC	TiO ₂ NT	BDD	86% (HCOOH)	1.7	5.6%	80%	This work

PEC: photoelectrochemical; PV: photovoltaic; EC: electrochemical;

15. Water oxidation potential at pH 14 (in 0.5 M KOH) vs Ag/AgCl (KCl sat'd)^{8,9}

 $E_{\text{Ag/AgCl}(\text{KCl sat'd})}^{0} = E_{\text{NHE}}^{0} - 0.197 - 0.059 \times \text{pH} = 1.229 - 0.197 - 0.826 = 0.206 \text{ V}$

16. References

- 1 J. Xu, Y. Yokota, R. A. Wong, Y. Kim, and Y. Einaga, J. Am. Chem. Soc., 2020, 142, 2310-2316.
- 2 X. Zhou, R. Liu, K. Sun, Y. Chen, E. Verlage, S. A. Francis, N. S. Lewis and C. Xiang, *ACS Energy Lett.*, 2016, **1**, 764-770.
- Gurudayal, J. Bullock, D. F. Srankó, C. M. Towle, Y. Lum, M. Hettick, M. C. Scott, A. Javey and
 J. Ager, *Energy Environ. Sci.*, 2017, 10, 2222-2230.
- 4 M. Schreier, F. Héroguel, L. Steier, S. Ahmad, J. S. Luterbacher, M. T. Mayer, J. Luo and M. Grätzel, *Nat. Energy*, 2017, **2**, 17087.

- 5 C. W. Kim, M. J. Kang, S. Ji and Y. S. Kang, ACS Catalysis, 2018, 8, 968-974.
- 6 S. Y. Chae, S. Y. Lee, S. G. Han, H. Kim, J. Ko, S. Park, O.-S. Joo, D. Kim, Y. Kang, U. Lee, Y. J. Hwang and B. K. Min, *Sustainable Energy Fuels*, 2020, **4**, 199-212.
- 7 M. Schreier, L. Curvat, F. Giordano, L. Steier, A. Abate, S. M. Zakeeruddin, J. Luo, M. T. Mayer,
 M. Grätzel, *Nat. Commun.*, 2015, 6, 7326.
- 8 T. J. Smith and K. J. Stevenson, Reference Electrodes, in C. G. Zoski Ed., *Handbook of Electrochemistry*, 2006, pp. 75.
- 9 G. Jerkiewicz, ACS Catal., 2020, 10, 8409-8417.